화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.294, 201-208, 2015
Efficient catalytic ozonation of bisphenol-A over reduced graphene oxide modified sea urchin-like alpha-MnO2 architectures
Considering the biological deleterious effect of bisphenol-A (BPA) in water to the human beings, great efforts have been made for the elimination of this contaminant from water sources. Herein, we report a novel nanocomposite composed of three-dimensional (3D) sea urchin-like alpha-MnO2 nanoarchitectures and reduced graphene oxide (RGO) for the elimination of BPA in water in the presence of ozone. The synthesis of the as-prepared nanocomposite is facile, and the nanocomposites were well characterized by SEM, TEM, XRD, and Raman spectra. The as-synthesized alpha-MnO2/RGO nanocomposite was found to be a highly efficient catalyst to eliminate BPA from water in the presence of ozone. The intermediates of ozonzation were also detected by gas chromatography-mass spectrometry (GC-MS). Our investigation initiates a new opportunity to explore the high-performance catalysts for the removal of the organic pollutions in water. (C) 2015 Elsevier B.V. All rights reserved.