화학공학소재연구정보센터
Journal of Loss Prevention in The Process Industries, Vol.35, 267-276, 2015
Investigation of pool spreading and vaporization behavior in medium-scale LNG tests
A failure of a Liquefied Natural Gas (LNG) tanker can occur due to collision or rupture in loading/unloading lines resulting in spillage of LNG on water. Upon release, a spreading liquid can form a pool with rapid vaporization leading to the formation of a flammable vapor cloud. Safety analysis for the protection of public and property involves the determination of consequences of such accidental releases. To address this complex pool spreading and vaporization phenomenon of LNG, an investigation is performed based on the experimental tests that were conducted by the Mary Kay O'Connor Process Safety Center (MKOPSC) in 2007. The 2007 tests are a part of medium-scale experiments carried out at the Brayton Fire Training Field (BFTF), College Station. The dataset represents a semi-continuous spill on water, where LNG is released on a confined area of water for a specified duration of time. The pool spreading and vaporization behavior are validated using empirical models, which involved determination of pool spreading parameters and vaporization rates with respect to time. Knowledge of the pool diameter, pool height and spreading rate are found to be important in calculating the vaporization rates of the liquid pool. The paper also presents a method to determine the vaporization mass flux of LNG using water temperature data that is recorded in the experiment. The vaporization rates are observed to be high initially and tend to decrease once the pool stopped spreading. The results of the analysis indicated that a vaporization mass flux that is varying with time is required for accurate determination of the vaporization rate. Based on the data analysis, sources of uncertainties in the experimental data were identified to arise from ice formation and vapor blocking. (c) 2014 Elsevier Ltd. All rights reserved.