화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.4, 1278-1285, April, 2016
Experimental investigation of CO2 capture using sodium hydroxide particles in a fluidized bed
E-mail:
CO2 capture from air using sodium hydroxide solid sorbent in a laboratory scale fluidized bed reactor was investigated experimentally. The influence of three parameters of temperature, inlet CO2 volume percentage and inlet air flow rate on the CO2 removal rate was studied. Experimental results showed that the optimum rate was at 25 ℃ when the inlet CO2 volume percentage was 1%. The results also showed that the adsorption process was reactive, and the reaction mechanism depended on the reaction temperature. In addition, empirical observation revealed only one adsorption cycle happened at low temperatures (25-30 ℃). As the temperature increased, the second adsorption cycle occurred and, finally, CO2 desorption cycle took place in the range of 90-115 ℃.
  1. Kim DM, Cho J, Korean J. Chem. Eng., 28(1), 22 (2011)
  2. Benamor A, Aroua MK, Korean J. Chem. Eng., 24(1), 16 (2007)
  3. Karadas F, Atilhan M, Aparicio S, Energy Fuels, 24, 5817 (2010)
  4. Yang H, Xu Z, Fan M, Gupta R, Slimane R, Bland A, J. Environ. Sci., 20, 14 (2008)
  5. Duke M, Ladewig B, Smart S, Rudolph V, Costa JDD, Front. Chem. Sci. Eng., 4, 184 (2010)
  6. Dutcher B, Fan MH, Leonard B, Sep. Purif. Technol., 80(2), 364 (2011)
  7. Kianpour M, Sobati MA, Shahhosseini S, Chem. Eng. Res. Des., 90(11), 2041 (2012)
  8. Kim K, Kim D, Park YK, Lee KS, Int. J. Greenhouse Gas Control, 26, 135 (2014)
  9. Gupta T, Ghosh R, Int. J. Greenhouse Gas Control, 32, 172 (2015)
  10. Shahrestani MM, Rahimi A, Environ. Eng. Res., 19, 299 (2014)
  11. Plaza MG, Duran I, Rubiera F, Pevida C, Appl. Energy, 144, 182 (2015)
  12. Alfea M, Ammendola P, Gargiulo V, Raganatib F, Chirone R, Proceedings of the Combustion Institute, 35, 2801 (2015)
  13. Seo H, Min DY, Kang NY, Choi WC, Park S, Park YK, Lee DK, Korean J. Chem. Eng., 32(1), 51 (2015)
  14. Nikulshina V, Gebald C, Steinfeld A, Chem. Eng. J., 146(2), 244 (2009)
  15. Butler JW, Lim CJ, Grace JR, Chem. Eng. Res. Des., 89(9A), 1794 (2011)
  16. Masnadi MS, Grace JR, Bi XTT, Ellis N, Lim CJ, Butler JW, Energy, 83, 326 (2015)
  17. Blamey J, Manovic V, Anthony EJ, Dugwell DR, Fennell PS, Fuel, 150, 269 (2015)
  18. Pourebrahimi S, Kazemeini M, Babakhani EG, Taheri A, Microporous Mesoporous Mater., 218, 144 (2015)
  19. Cheng D, Liu Y, Wang H, Weng X, Wu Z, J. Environ. Sci., 38, 1 (2015)
  20. Duelli G, Charitos A, Diego ME, Stavroulakis E, Dieter H, Scheffknecht G, Int. J. Greenhouse Gas Control, 33, 103 (2015)
  21. Antzara A, Heracleous E, Lemonidou AA, Appl. Energy, 156, 331 (2015)
  22. Kunii D, Levenspiel O, Fluidization engineering, 2nd Ed., Butterworth-Heinemann, Boston (1991).
  23. Ayobi M, Shahhosseini S, Behjat Y, J. Taiwan. Inst. Chem. E., 45, 421 (2013)
  24. Choi JH, Yi CK, Jo SH, Ryu HJ, Park YC, Korean J. Chem. Eng., 31(2), 194 (2014)
  25. Zhang WB, Liu H, Sun CG, Drage TC, Snape CE, Chem. Eng. Sci., 116, 306 (2014)
  26. Nikulshina V, Ayesa N, Galvez ME, Steinfeld A, Chem. Eng. J., 140(1-3), 62 (2008)
  27. Cameron-cole, Salt creek phases III/IV environmental assessment, U.S. Department of the Interior (2006).
  28. Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465 (2008)
  29. Geldart D, Powder Technol., 7, 285 (1973)
  30. Siriwardane RV, Robinson C, Shen M, Simonyi T, Energy Fuels, 21(4), 2088 (2007)
  31. Liang Y, Carbon dioxide capture from flue gas using regenerable sodium-based sorbents, Master of Science in Chemical Engineering, Tsinghua University, Beijing, China (2003).
  32. Zhao CW, Chen XP, Anthony EJ, Jiang X, Duan LB, Wu Y, Dong W, Zhao CS, Prog. Energy Combust. Sci., 39(6), 515 (2013)
  33. Yi CK, Jo SH, Seo Y, Park SD, Moon KH, Yoo JS, Stud. Surf. Sci. Catal., 159, 501 (2006)
  34. Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK, Int. J. Greenhouse Gas Control, 1, 31 (2007)