화학공학소재연구정보센터
International Journal of Multiphase Flow, Vol.71, 66-73, 2015
Modelling the wetting of a solid occlusion by a liquid film
We investigate in this work how the presence of an occlusion affects the dynamics of the wetting front of a liquid film draining down a vertical surface. This numerical study is developed in the context of the lubrication approximation. Through a parametric study, we show that depending on the asymptotic film thickness and the fluid properties, there exists a critical substrate contact angle below which separation of the contact line from the occlusion wall is observed which results in the appearance of a dry zone in the wake of the occlusion. In analogy with external aerodynamics, we also show that a sharp corner in the occlusion can induce this contact line separation. Our numerical results also highlight the importance of the occlusion wettability on the morphology of the wetting front suggesting a possible mechanism to control and mitigate the often undesirable fingering instability. (C) 2015 Elsevier Ltd. All rights reserved.