International Journal of Hydrogen Energy, Vol.41, No.3, 1672-1678, 2016
Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors
The utility of carbon materials for electrochemical energy storage devices has been rapidly increasing in the recent years. In this study, graphdiyne nanostructures have been prepared via a cross-coupling reaction and their electrochemical properties were investigated for supercapacitor applications. Spectroscopic studies such as X-ray photoelectron spectroscopy and Raman analysis confirmed the formation of graphdiyne with high order and low defects. Cyclic voltammetric studies revealed the quasi-rectangular profiles suggesting the presence of electrochemical double layer and Faradaic capacitance in graphdiyne. The graphdiyne electrode delivered a specific capacitance of about 71.4 F/g from the galvanostatic charge discharge analysis measured at a constant discharge current density of 3.5 A/g. Moreover, the cyclic stability tests demonstrated excellent capacitance retention of about 97% for the graphdiyne electrode. These studies suggested the potential applications of graphdiyne as an electrode material for supercapacitor devices. Copyright (c) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.