International Journal of Hydrogen Energy, Vol.40, No.17, 5869-5877, 2015
Hydrogen production by steam reforming of liquefied natural gas (LNG) over mesoporous nickel-iron-alumina catalyst
A set of mesoporous nickel-iron-alumina xerogel catalysts (denoted as 20NixFeAl) with different iron loading (x = 0-10) were prepared by an epoxide-driven sol-gel method. The effect of iron loading on the physicochemical properties and catalytic activities of mesoporous nickel-iron-alumina xerogel catalysts in the steam reforming of liquefied natural gas (LNG) was investigated. It was found that all the calcined 20NixFeAl catalysts showed a well-developed mesoporous structure and retained finely dispersed nickel and iron species. Reducibility of calcined 20NixFeAl catalysts was enhanced by iron addition due to the increased amount of octa-coordinated nickel species. From H-2-TPD and XPS results, it was revealed that nickel surface area of reduced 20NixFeAl catalysts showed a volcano-shaped trend with respect to iron loading. This result indicates that an optimal iron addition was required for fine dispersion of nickel species in the reduced 20NixFeAl catalysts. In the steam reforming of LNG, 20Ni4FeAl catalyst with the highest nickel surface area showed the best catalytic performance in terms of LNG conversion and hydrogen yield. Thus, nickel surface area of 20NixFeAl catalysts played a key role in determining the catalytic performance in the steam reforming of LNG. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:Hydrogen production;Steam reforming of LNG;Mesoporous nickel-iron-alumina catalyst;Epoxide-driven sol-gel method