화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.95, 833-842, 2016
Numerical cooling performance evaluation of fan-assisted perforations in a raised-floor data center
Raised floors with hot-aisle/cold-aisle configurations have grown to be a critical arrangement for data center cooling. However, more sophisticated techniques are still desired to achieve proper thermal management for improving energy effectiveness and efficiency. The application of fan-assisted perforations may yield a smarter cooling solution accommodating non-uniform power densities and heat load demands to optimize the cooling performance in raised-floor data centers. The present research includes the construction and thermal analysis of a basic raised floor with compact fan assisted perforations modeled using computational fluid dynamics (CFD). The flow straightening effect of the fan-assisted tile and the fan-to-tile distance were treated as the critical design aspects under investigation. The field cooling performance affected by the parametric variation were carefully discussed and compared. Moreover, a full factorial design was employed to obtain and verify the qualitative and quantitative characteristics of the main and interaction effects of the design variation. Well-constructed fan-assisted perforations may satisfy an advanced cooling solution to better manage and optimize the heat and mass transfer in data centers. (C) 2015 Elsevier Ltd. All rights reserved.