화학공학소재연구정보센터
Journal of Materials Science, Vol.31, No.24, 6423-6429, 1996
Fracture-Behavior of SiC Fiber-Reinforced Nitrogen Glass Matrix Composites
Both Nicalon and Hi-Nicalon SiC fibre-reinforced nitrogen glass composites were prepared by slurry infiltration and hot-pressing, and the interfacial features, fracture behaviour and mechanical properties of these composites were investigated. It was found that the interfacial characteristics were mainly dictated by the thermal expansion properties of the matrix and the type of SIC fibre. Yttrium sialon glass has a higher thermal expansion coefficient than SIC fibres, so a radial compressive stress on the fibre due to thermal mismatch caused a larger interfacial frictional stress between fibre and matrix. As a result, the composite failed in a brittle manner with no effective strengthening and toughening. Strong reaction between the Hi-Nicalon SiC fibre and matrix also resulted in relatively poor performance of these composites. In contrast, lithium sialon glass provided a matrix for these composites with significantly improved mechanical properties.