화학공학소재연구정보센터
International Journal of Control, Vol.88, No.6, 1257-1270, 2015
Boundary control of a Timoshenko beam system with input dead-zone
In this paper, boundary control is designed for a Timoshenko beam system with the input dead-zone. By the Hamilton's principle, the dynamics of the Timoshenko beam system is represented by a distributed parameter model with two partial differential equations and four ordinary differential equations. The bounded part is separated from the input dead-zone and then forms the disturbance-like term together with the boundary disturbance, which finally acts on the Timoshenko beam system. Boundary control, based on the Lyapunov's direct method, is proposed to ensure the Timoshenko beam converge into a small neighbourhood of zero, where stability of the system is also analysed. Besides, the existence and uniqueness of the solution of the Timoshenko beam system are proved. Simulations are provided to reveal the applicability and effectiveness of the proposed control scheme.