화학공학소재연구정보센터
Inorganic Chemistry, Vol.54, No.10, 4972-4980, 2015
Kinetico-Mechanistic Studies of Nucleoside and Nucleotide Substitution Reactions of Co-III Complexes of Fully Alkylated Cyclen
The solution chemistry of complex [Co{(Me)(2)(mu-ET)cyclen}(H2O)(2)](3+) containing a fully substituted tetraammine ligand designed for the avoidance of base-conjugated substitution mechanisms in the 6-8 pH range has been studied. The study should shed some light on the possible involvement of such Co-III skeleton in inert interactions with biomolecules. The reactivity and speciation of the complex has been found similar to that of the parent cyclen derivative with the presence of mono- and bis-hydroxo-bridged species; at pH < 7.1, all reactivity has been found to be related to the aqua/hydroxo monomeric complexes. Under these pH conditions, the substitution reactions of the aqua/hydroxo ligands by chloride, inorganic phosphate, thymidine, cytidine 5'-monophosphate (5'-CMP), and thymidine-5'-monophosphate (5'-TMP) have been studied at varying conditions; ionic strength has been kept at 1.0 NaClO4 due to the high concentration of 2-(N-morpholino)ethanesulfonic acid (MES) or N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) used to ensure buffering. Except for chloride, the process occurs neatly in a one or two step process, showing dissociatively activated substitution mechanisms, having in general large Delta H double dagger positive Delta S double dagger, and values of Delta V double dagger close to those corresponding to the liberation of an aqua ligand to the reaction medium. The actuation of noticeable encounter-complex formation equilibrium constants has been found to be the determinant for the reactions with nucleosides and nucleotides, a clear indication of the relevance of hydrogen-bonding interactions in the reactivity of these molecules, even in this highly ionic strength medium. For the substitution of the active aqua/hydroxo ligands with 5'-TMP, the first substitution reaction produces an Nthymine-bound 5'-TMP complex that evolves to a bis-5'-TMP with an Nthymine,Ophosphate-bonding structure. The formation of outer-sphere complexes between the dangling phosphate group of the Nthymine-bound 5'-TMP and the thymine moiety of another entering 5'-TMP has been found to be responsible for this fact, which leaves only the phosphate group for coordination available.