Inorganic Chemistry, Vol.54, No.22, 10738-10747, 2015
Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties
The properties recently reported on the Cu(I)-iodide pyrimidine nonporous 1D-coordination polymer [CuI(ANP)](n) (ANP = 2-amino-5-nitropyridine) showing reversible physically and chemically driven electrical response have prompted us to carry a comparative study with the series of [CuX(ANP)](n) (X = Cl (1), X = Br (2), X = CN (4), and X = SCN (5)) in order to understand the potential influence of the halide and pseudohalide bridging ligands on the physical properties and their electrical response to vapors of these materials. The structural characterization of the series shows a common feature, the presence of -X- Cu(ANP) X = Cl, Br, I, SCN) double chain structure. Complex [Cu(ANP)(CN)](n) (4) presents a helical single chain. Additionally, the chains show supramolecular interlinked interactions via hydrogen bonding giving rise to the formation of extended networks. Their luminescent and electrical properties have been studied. The results obtained have been correlated with structural changes. Furthermore, the experimental and theoretical results have been compared using the density functional theory (DFT). The electrical response of the materials has been evaluated in the presence of vapors of diethyl ether, dimethyl methylphosphonate (DM.MP), CH2Cl2, HAcO, MeOH, and EtOH, to build up simple prototype devices for gas detectors. Selectivity toward gases consisting of molecules with H-bonding donor or acceptor groups is clearly observed. This selective molecular recognition is likely due to the 2-amino-5-nitropyridine terminal ligand.