Journal of Materials Science, Vol.31, No.17, 4493-4501, 1996
Diffusion Bonding of Ferritic Oxide Dispersion-Strengthened Alloys to Austenitic Superalloys
The superior high temperature mechanical strength and oxidation resistance of ferritic oxide dispersion strengthened (ODS) tubular alloys are compromised by the difficulties encountered in joining. Conventional fusion welding techniques generate a weld fusion zone which is devoid of the mechanical strength exhibited by the base material. Therefore, more sophisticated solid state joining techniques, such as diffusion bonding, must be employed when joining ODS materials. This paper describes a series of solid state diffusion bonding experiments carried out between two tubular ferritic ODS alloys and two high temperature austenitic alloys. Careful control of bonding conditions produced pressure retaining joints between one of the tubular ODS alloys and both austenitic alloys. The successful joint design was incorporated into the manufacture of a tubular creep component, which enabled a series of internally pressurized creep tests to be carried out. The microstructure developed at the bond interface of each of the four separate material couples is described and the high temperature performance of the pressure retaining joints is discussed.