화학공학소재연구정보센터
Journal of Materials Science, Vol.31, No.3, 633-641, 1996
Microstructural Characterization of SiC/Al and Fp/Al Metal-Matrix Composites Subjected to Dynamic Loadings
The Split Hopkinson Pressure Bar technique was used to study the dynamic response of silicon carbide particle- and whisker-reinforced aluminium (SiC/Al-P and SiC/Al-W) and continuous Fibre FP-reinforced aluminium (FP/Al), metal matrix composites, subjected to high strain rates in the range of 300-3200 s(-1). The response of these composites was characterized by macroscopic and microscopic observations. Experiments on SiC/Al-W and FP/Al were conducted with the whiskers/fibres oriented in the axial, as well as, in the transverse direction with respect to the loading direction. It was observed that for the silicon carbide-reinforced metal matrix composites, the dynamic flow stress values were consistently higher than the static/quasi-static values. Experiments conducted on FP/Al with the fibres oriented transversely to the loading direction, revealed failure stress values considerably lower than the static/quasi-static values. This anomalous behaviour was attributed to the predominantly shear mode failure of the material. Microscopic observations using optical and scanning electron microscopy corroborate the macroscopically observed behaviour.