화학공학소재연구정보센터
Journal of Materials Science, Vol.31, No.2, 463-469, 1996
Theoretical and Experimental Considerations on the Thermal-Shock Resistance of Sintered Glasses and Ceramics Using Modeled Microstructure-Property Correlations
The thermal shock resistance of brittle materials such as glass and ceramics is one of their weaknesses. Pores and other incorporated second phases in these materials alter these properties which are decisive for thermal shock behaviour, and may therefore increase this behaviour in a precalculable manner. It has been theoretically demonstrated when and why porosity leads to an improvement in thermal shock resistance. The thermal shock resistance for porous borosilicate sintered glass and porous eutectic calcium titanate ceramic have been calculated and compared to experimental values. The results confirm that low porosities lead to an improvement in thermal shock resistance, that the thermal shock resistance has a maximum at a certain porosity, and that above certain porosities, the presence of pores deteriorates the thermal shock resistance. If porous materials are considered as a special case of composite materials, then relations valid for porous materials can be transferred to composite materials and vice versa ("composite concept"). This has been investigated using the examples of borosilicate sintered glass with incorporated antimony particles and eutectic calcium titanate ceramic with incorporated paladium particles. In the case of the glass-antimony composite material, improvements in thermal shock resistance of about 15% with 10 vol % antimony incorporation, were calculated and confirmed experimentally, while for calcium titanate-palladium composite materials, a 15% improvement in thermal shock resistance was already achieved with about 5 vol % metallic phase.