화학공학소재연구정보센터
Journal of Materials Science, Vol.30, No.22, 5607-5616, 1995
Fragmentation of Aramid Fibers in Single-Fiber Model Composites
Raman spectroscopy has been used to monitor the state of axial stress along fragmented, high-modulus Kevlar 149 aramid fibres in an epoxy resin matrix by monitoring the peak position of the strain-sensitive 1610 cm(-1) aramid Raman band along individual fragments. It is shown that the interfacial shear stress along each fragment, derived from the strain-distribution profiles, is not constant as assumed by conventional fragmentation analysis. The fragmentation process of as-received Kevlar 149 fibres is compared to that of irradiated Kevlar 149 fibres exposed to ultraviolet light where the tensile strength and modulus of the fibres have been reduced. It is found that the derived interfacial shear stress and interfacial shear strength values are higher for those fibres exposed to ultraviolet light compared with the as-received fibres. It is also clearly demonstrated that the values of interfacial shear strength calculated at high matrix strains from conventional fragmentation analysis are considerably lower than the maximum value of interfacial shear stress prior to fibre fracture that was found to be close to the shear yield stress of the resin matrix. Hence the determination of the interfacial shear strength following the saturation of the fragmentation process may give rise to misleading results.