화학공학소재연구정보센터
Energy, Vol.84, 825-839, 2015
A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application
Integrating energy storage system into wind system can mitigate the negative effects caused by the intermittent wind. In addition, the spectrum analysis of wind power implies that the hybrid energy storage system may have better performance on smoothing out the wind power fluctuations than the independent energy storage system. The main advantage of the hybrid energy storage system is the multi-response speeds. Also, the hybrid energy storage system often operates in the modes switch, partial load and frequent start/stop conditions. Thus, the dynamic behaviors of each devices and the assembly of hybrid energy storage system are important for the system operation and control system design. The design, off-design analysis and parametric analysis of a wind-hybrid energy storage system consisting an A-CAES (adiabatic compressed air energy storage) system and a FESS (flywheel energy storage system) based on spectrum analysis method are carried out in the previous paper (P Zhao et al., 2014). This paper will conduct a preliminary dynamic behaviors analysis of the proposed wind-hybrid energy storage system based on the dynamic models. The simulation results indicate that the total power of wind-hybrid energy storage system can fit the load requirement well, providing an efficient power management for wind power penetration. (C) 2015 Elsevier Ltd. All rights reserved.