Journal of Industrial and Engineering Chemistry, Vol.35, 262-267, March, 2016
Insights into deactivation mechanism of Cu-ZnO catalyst in hydrogenolysis of glycerol to 1,2-propanediol
E-mail:
The deactivation mechanism of Cu-ZnO catalyst was investigated in detail. During the glycerol
hydrogenolysis cycles, the morphology of Cu-ZnO catalyst was firstly changed from spherical
nanoparticles to lamellar structure and then to rod-like structure, and the uniform surface composition was deteriorated. The obvious aggregation of Cu and ZnO crystallite sites led to the decrease in specific surface area and pore volume. Furthermore, the Cu content on the catalyst surface significantly decreased with the increase of the number of reaction cycle. These findings provide in-depth insights on the deactivation of Cu-ZnO catalyst and the obvious decrease in glycerol conversion.
Keywords:Submerged catalysis/membrane filtration;system;Glycerol hydrogenolysis;1,2-Propanediol;Cu-ZnO catalyst;Catalyst deactivation
- Narula CK, Li Z, Casbeer EM, Geiger RA, Moses-Debusk M, Keller M, Buchanan MV, Davison BH, Sci. Rep., 5, 16309 (2015)
- Klein-Marcuschamer D, Blanch HW, AIChE J., 61, 2689 (2015)
- Lee O, Seong DH, Lee CG, Lee EY, J. Ind. Eng. Chem., 29, 24 (2015)
- Lanzafame P, Centi G, Perathoner S, Chem. Soc. Rev., 43, 7562 (2014)
- Figueiredo EDS, Vieira EDC, D’Elia E, J. Ind. Eng. Chem., 23, 353 (2015)
- Christopher LP, Kumar H, Zambare VP, Appl. Energy, 119, 497 (2014)
- Liao X, Li K, Xiang X, Wang SG, She X, Zhu Y, Li Y, J. Ind. Eng. Chem., 18(2), 818 (2012)
- Feng YS, Liu C, Kang YM, Zhou XM, Liu LL, Deng J, Xu HJ, Fu Y, Chem. Eng. J., 281, 96 (2015)
- Gallegos-Suarez E, Guerrero-Ruiz A, Rodriguez-Ramos I, Arcoya A, Chem. Eng. J., 262, 326 (2015)
- Zhou JX, Zhang J, Guo XW, Mao JB, Zhang SG, Green Chem., 14, 156 (2012)
- Rodrigues R, Isoda N, Gonc¸alves M, Figueiredo FCA, Mandelli D, Carvalho WA, Chem. Eng. J., 198-199, 457 (2012)
- Xia SX, Yuan ZL, Wang LN, Chen P, Hou ZY, Appl. Catal. A: Gen., 403(1-2), 173 (2011)
- Jimenez-Morales I, Vila F, Mariscal R, Jimenez-Lopez A, Appl. Catal. B: Environ., 117, 253 (2012)
- Panyad S, Jongpatiwut S, Sreethawong T, Rirksomboon T, Osuwan S, Catal. Today, 174(1), 59 (2011)
- Wang S, Liu HC, Catal. Lett., 117(1-2), 62 (2007)
- Bienholz A, Schwab F, Claus P, Green Chem., 12, 290 (2010)
- Wang CC, Jiang H, Chen CL, Chen RZ, Xing WH, Chem. Eng. J., 364, 344 (2015)
- Wang CC, Jiang H, Chen CL, Chen RZ, Xing WH, J. Membr. Sci., 489, 135 (2015)
- Ye XY, Xiao XQ, Zheng C, Hua NB, Huang YY, Mater. Lett., 152, 237 (2015)
- Emdadi L, Wu YQ, Zhu GH, Chang CC, Fan W, Pham T, Lobo RF, Liu DX, Chem. Mater., 26, 1345 (2014)
- Meher LC, Gopinath R, Naik SN, Dalai AK, Ind. Eng. Chem. Res., 48(4), 1840 (2009)
- Bae JW, Kang SH, Lee YJ, Jun KW, J. Ind. Eng. Chem., 15(4), 566 (2009)
- Nie RF, Lei H, Pan SY, Wang LN, Fei JH, Hou ZY, Fuel, 96(1), 419 (2012)
- Niu L, Wei RP, Li C, Gao LJ, Zhou MH, Jiang F, Xiao GM, Reac. Kinet. Mech. Cat., 115, 377 (2015)
- Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ, Appl. Catal. A: Gen., 281(1-2), 225 (2005)
- Xia SX, Nie RF, Lu XY, Wang LN, Chen P, Hou ZY, J. Catal., 296, 1 (2012)
- Ghosh S, Roy M, Naskar MK, Mater. Lett., 132, 98 (2014)
- Nouneh K, Ajjammouri T, Laghfour Z, Maaroufi A, Abd-Lefdil M, Chaumont D, Sekkat Z, Mater. Lett., 139, 26 (2015)
- Zhao D, Xiong X, Qu CL, Zhang N, J. Phys. Chem. C, 118, 19007 (2014)
- Bakovets VV, Nadolinnii VA, Kovalenko EA, Plyusnin PE, Dolgovesova IP, Zaikovskii VIJ, Solid State Chem., 221, 202 (2015)
- Sathishkumar P, Sweena R, Wu JJ, Anandan S, Chem. Eng. J., 171(1), 136 (2011)
- Zhang HB, Jin SW, Duan GT, Wang JJ, Cai WP, J. Mater. Sci. Technol., 30, 1118 (2014)
- Melian-Cabrera I, Granados ML, Fierro JLG, J. Catal., 210(2), 285 (2002)