Macromolecular Research, Vol.24, No.3, 235-239, March, 2016
Vertical alignment of liquid crystals using an in situ self-assembled layer of an amphiphilic block copolymer
E-mail:
We have employed an in situ self-assembled layer of an amphiphilic block copolymer to vertically align liquid crystals (LCs). The amphiphilic block copolymer used consisted of hydrophobic polyethylene (PE) and hydrophilic polyethylene glycol (PEG). The degrees of vertical alignment obtained for various PEG contents and polymer concentrations were compared through polarized optical microscopy, electro-optical measurements, and contact angle measurements. The LC cell prepared using a PEG content of 50% and concentration of 0.05 wt% exhibited the most uniform vertical alignment. Moreover, the electro-optical characteristics of this LC cell were similar to those of a conventional LC cell fabricated using a polyimide alignment layer. This was because the anchoring force for a PEG content of 50% was sufficiently high, allowing for uniform alignment. Since the proposed method involves only the simple doping of a low-concentration (0.05 wt%) amphiphilic block copolymer, it is also cost effective.
- Wu ST, J. Appl. Phys., 76, 5975 (1994)
- Lien SC, Cai C, Nunes RW, John RA, Galligan EA, Colgan E, Wilson JS, Jpn. J. Appl. Phys., 37, 597 (1998)
- Lyu JJ, Sohn J, Kim HY, Lee SH, J. Dispersion Sci. Technol., 3, 404 (2007)
- Kim SS, Berkeley BH, Kim KH, Song JK, J. Soc. Inf. Disp., 12, 353 (2012)
- Cai C, Lien A, Andry PS, Chaudhari P, John RA, Galligan EA, Lacey JA, Ifill H, Graham WS, Allen RD, Jpn. J. Appl. Phys., 40, 6913 (2001)
- Chae SS, Min H, Lee JH, Hwang B, Sung WM, Jang WS, Yoo YB, Oh J, Park JH, Kang D, Kim D, Kim YS, Baik HK, Adv. Mater., 25(10), 1408 (2013)
- Lee HJ, Kim YH, Lee JJ, Park HG, Yang S, Kim BY, Lee YD, Ju BK, Seo DS, Mater. Chem. Phys., 126(3), 628 (2011)
- Chen PS, Chang HH, Chen JW, Lin TC, Chao CY, Mol. Cryst. Liq. Cryst., 507, 194 (2009)
- Chen PS, Chen JW, Chang HH, Hsu CH, Shen CC, Chang YH, Liu HL, Kuan CH, Chao CY, Jpn. J. Appl. Phys., 47, 8606 (2008)
- Yang S, Lee JJ, Lee HJ, Kang YG, Kim HJ, Jung HY, Seo DS, Liq. Cryst., 39, 71 (2012)
- Chun JY, Seo DS, Jpn. J. Appl. Phys., 49, 040210 (2010)
- Hah H, Sung SJ, Park JK, Appl. Phys. Lett., 90, 063508 (2007)
- Tanigaki N, Mochizuki H, Mizokuro T, Yoshida Y, Yase K, Mol. Cryst. Liq. Cryst., 445, 119 (2006)
- Zheng W, Yang LH, Lee MC, Photonics Lett. Polym., 3, 8 (2010)
- Choi Y, Kim YT, Lee SD, Kim JH, Mol. Cryst. Liq. Cryst., 433, 191 (2005)
- Lim YW, Kim DW, Lee SD, Mol. Cryst. Liq. Cryst., 489, 183 (2008)
- Hamelinck PJ, Huck WTS, J. Mater. Chem., 15, 381 (2005)
- Piao G, Otaka T, Sato T, Akagi K, Kyotani M, Mol. Cryst. Liq. Cryst., 365, 117 (2001)
- Yoon YS, Kang H, Kim BG, Lee JC, Macromol. Chem. Phys., 211, 353 (2010)
- Kang H, Seo JG, Kang D, Lee JC, Liq. Cryst., 40, 492 (2013)
- Chae B, Kim SB, Lee SW, Kim SI, Choi W, Lee B, Ree M, Lee KH, Jung JC, Macromolecules, 35(27), 10119 (2002)
- Lee SJ, Jung JC, Lee SW, Ree M, J. Polym. Sci. A: Polym. Chem., 42(13), 3130 (2004)
- Lee SB, Shin GJ, Chi JH, Zin WC, Jung JC, Hahm SG, Ree M, Chang T, Polymer, 47(19), 6606 (2006)
- Kim KH, Park BW, Choi SW, Lee JH, Kim H, Shin KC, Kim HS, Yoon TH, Liq. Cryst., 40, 391 (2013)