- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.40, No.2, 336-340, March, 2016
20%의 반복 인장변위에 의한 신축성 그라파이트 인터칼레이션 화합물/실리콘 복합재료의 물성
Properties of Stretchable Graphite Intercalation Compound/Polydimethylsiloxane Composites after Cyclic Tensile Strain of 20%
E-mail:
초록
인장변위를 20%로 하여 1000회 반복 스트레칭한 후의 그라파이트 인터칼레이션 컴파운드(GIC)/폴리디메틸실록산(PDMS) 복합재료의 모폴로지, 열전도도, 표면저항 변화를 조사하였다. 주사전자현미경으로 관찰한 결과 GIC 는 PDMS 매트릭스 내에 방향성 없이 균일하게 분산되었으나, PDMS는 높은 점도로 인하여 팽창 GIC의 미세 기공속으로는 침투하지 못하였다. 3차원적으로 연결된 구조를 가지는 GIC 필러가 PDMS 복합재료의 열전도도 증가 및 표면저항 감소와 연관됨을 확인하였다. 20 wt%의 GIC 필러를 포함하는 PDMS 복합재료의 열전도도와 표면저항은 각각 0.80W/mK, 6×1013 Ω/sq이었으나 1000회 반복 인장 스트레칭 후에 0.69W/mK, 3.04×1014 Ω/sq로 변화하였다. 반복 스트레칭 전후의 복합재료 물성변화의 주요 원인은 GIC 필러와 PDMS 매트릭스 사이에 생긴 계면 크랙 때문인 것으로 여겨진다.
The expanded graphite intercalated compound (GIC)/poly(dimethyl siloxane) (PDMS) composites were prepared and the effects of cyclic stretching on the morphology, thermal conductivity and surface resistance of the composites were investigated. PDMS resin did not penetrate into the pores of the expanded GIC. The uniform distribution and spatially connected GICs in the PDMS matrix resulted in improved thermal conductivity and decreased sheet resistance. The thermal conductivity and sheet resistance of GIC(20 wt%)/PDMS composites were changed after 1000 cycles of 20% tensile strain from 0.80 W/mK and 6×1013 Ω/sq to 0.69 W/mK and 3.04×1014 Ω/sq, respectively. The decreased thermal conductivity and the increased sheet resistance of the composites after cyclic stretching was attributed to the formation of the interfacial crack between PDMS matrix and the GIC filler.
Keywords:thermal conductivity;graphite intercalation compound;poly(dimethyl siloxane);stretching;surface resistance
- Yilgor I, Yilgor E, Polym. Bull., 40(4-5), 525 (1998)
- Ng JMK, Gitlin I, Stroock AD, Whitesides GM, Electrophoresis, 23(20), 3461 (2002)
- Fernandes MS, Lee KS, Ram RJ, Correia JH, Mendes PM, Proc. IEEE 32nd Annu. Int. Conf. Eng. Med. Biol. Soc., 3503 (2010)
- Yang LJ, Wang HH, Yang PC, Chung YC, Sheu TS, Sensors and Materials, 19, 391 (2007)
- Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM, Langmuir, 18(13), 5314 (2002)
- Antonisse MMG, Engbersen JFJ, Reinhoudt DN, 1995 Nitrate and Bicarbonate Selective CHEMFET Proc. Transducers '95 (Stockholm), 867 (1995).
- Myers AC, Huangc H, Zhu Y, RSC Adv., 5, 11627 (2015)
- Bae YH, Park GD, Jung HO, Vu MC, Kim SR, Polym. Korea, 40(1), 148 (2016)
- Fu YX, He ZX, Mo DC, Lu SS, Appl. Therm. Eng., 66, 493 (2014)
- Renteria JD, Nika DL, Balandin AA, Appl. Sci., 4, 525 (2014)
- Xiao X, Zhang P, Li M, Energy Conv. Manag., 73, 86 (2013)
- Zheng W, Wong SC, Compos. Sci. Technol., 63, 225 (2003)
- Xu F, Zhu Y, Adv. Mater., 24(37), 5117 (2012)
- Arafat Y, Dutta I, Panat R, Appl. Phys. Lett., 107, 081906 (2015)
- Pan YX, Yu ZZ, Ou YC, Hu GH, J. Polym. Sci. B: Polym. Phys., 38(12), 1626 (2000)
- Wang WP, Liu Y, Li XX, You YZ, J. Appl. Polym. Sci., 100(2), 1427 (2006)
- Kim SR, Poostforush1 M, Kim JH, Lee SG, eXPRESS Polym. Lett., 6, 476 (2012)
- Chen H, Botef I, Zheng H, Maaza M, Rao VV, Srinivasu VV, Int. J. Nanotechnol., 8, 437 (2011)