화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.2, 313-320, March, 2016
열적으로 안정한 리그닌 공중합물과 PP의 용융 블렌드 제조 및 물성
Preparation and Properties of Thermally Stable Lignin-based Copolymer/PP Blends by Melt Process
E-mail:
초록
리그닌과 ε-caprolactone의 고리열림반응과 수반된 ε-caprolactone의 중합을 통해 lignin-based polycaprolactone(LigPCL) 공중합물을 합성하였다. FTIR의 C=O(1755 cm-1) 및 C-O(1202 cm-1) 피크들을 통해 LigPCL이 성공적으로 중합되었음을 확인하였다. 순수한 리그닌과 LigPCL의 T2(열분해로 중량이 2% 감소하는 온도)는 각각 63와 211℃ 로서 LigPCL의 열안정성이 크게 향상된 것을 확인하였다. LigPCL은 용융 압출공정을 통해 PP와 30 wt%까지의 함량비에서 여러 블렌드를 제조하였다. PP/LigPCL 블렌드들은 LigPCL의 함량에 비례하여 인장강도, 굴곡강도 및 인장탄성률은 감소하였으나 파단신율은 크게 증가하였다. PP와 LigPCL 사이의 상용성 증대를 위해 말레산무수물로 그래프트된 폴리프로필렌(PP-g-MA)을 첨가함으로써 분산상의 크기가 감소하는 것이 파단면의 SEM 이미지에서 확인되었다. PP/LigPCL 70/30 블렌드에 PP-g-MA를 첨가하여 T2는 6℃ 증가하였고, 인장강도는 17%, 인장탄성률은 31%, 그리고 파단신율은 79%가 향상되었다. 본 연구를 통해 열가소성의 LigPCL이 성공적으로 합성되었고 고분자블렌드 및 컴포지트 제조에 사용되는 용융공정을 통한 고부가가치의 친환경 제품에 응용될 수 있음을 증명하였다.
Lignin-based polycaprolactone (LigPCL) copolymer was synthesized by both the ring opening reaction of ε-caprolactone with the hydroxyl groups in the lignin and the concomitant polymerization of ε-caprolactone. FTIR spectra showed C=O (1755 cm-1) and C-O (1202 cm-1) peaks confirming that the esterification reaction took place successfully between lignin and ε-caprolactone. T2, at which the weight loss of 2% occurs, of pristine lignin and LigPCL were measured as 63 and 211 ℃, respectively, and so the synthesized LigPCL had superior thermal stability to the lignin. PP/Lig-PCL blends were prepared at various contents of LigPCL up to 30 wt% by a melt extrusion process. In proportion to the content of the LigPCL, tensile strengths, flexural strengths, and tensile modulus of PP/LigPCL blends greatly decreased, but elongations at break of those greatly increased. To improve the compatibility between PP and LigPCL, maleic anhydride-grafted polypropylene (PP-g-MA) was added. SEM images for the fracture surfaces of the blends showed that the PP-g-MA was effective in reducing the domain size of dispersed phase. Thus, T2, tensile strength, tensile modulus, and elongation at break of a 70/30 blend of PP/LigPCL were enhanced by 6 ℃, 17%, 31%, and 79%, respectively, by the addition of PP-g-MA. This work clearly demonstrates that thermoplastic LigPCL could be desirably synthesized and applied for value added and eco-friendly products through common melt processes used for polymer blend or composites manufacturing.
  1. Kim HY, Goh JS, Ryu MH, Kim DS, Song BK, Lee SH, Park SJ, Jegal JG, Polym. Korea, 38, 31 (2013)
  2. Jegal J, Korean Ind. Chem. News, 15(4), 21 (2012)
  3. Funabashi M, Ninomiya F, Kunioka M, Ohara K, Bull. Chem. Soc. Jpn., 82, 1538 (2009)
  4. ASTM D 6866-12, Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis.
  5. Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Aucejo S, BioResources, 7, 2506 (2012)
  6. Feldman D, Lacasse M, Beznaczuk LM, Prog. Polym. Sci, 12, 271 (1986)
  7. Lora JH, Glasser WG, J. Polym. Environ., 10, 39 (2002)
  8. Sarkanen KV, Ludwig CH, Lignin: Occurrence, Formation, Structure and Reactions, Wiley-Interscience, New York, 1971.
  9. Hatakeyama T, Hatakeyama H, Thermal Properties of Green Polymers and Biocomposites, Kluwer Academic Publishers, London, 2004.
  10. Duong LD, Luong ND, Binh NTT, Park IK, Lee SH, Kim DS, Lee YS, Lee YK, Kim BW, Kim KH, Yoon HK, Yun JH, Nam JD, BioResources, 8, 4518 (2013)
  11. Othmer K, Encyclopedia of Chemical Technology, 5thed, Wiley, New York, 2005.
  12. Bonini C, D'Auria M, Ernanuele L, Ferri R, Pucciariello R, Sabia AR, J. Appl. Polym. Sci., 98(3), 1451 (2005)
  13. Binh NTT, Luong ND, Kim DO, Lee SH, Kim BJ, Lee YS, Nam JD, Compos. Interfaces, 16(7-9), 923 (2009)
  14. Evtuguin DV, Andreolety JP, Gandini A, Eur. Polym. J., 34, 1163 (1998)
  15. Hatakeyama T, Izuta Y, Hirose S, Hatakeyama H, Polymer, 43(4), 1177 (2002)
  16. Yoshida H, Morck R, Knut PK, Hyoe H, J. Appl. Polym. Sci., 40, 1819 (1990)
  17. Nakamura K, Hatakeyama T, Hatakeyama H, Polym. Adv. Technol., 3, 151 (1992)
  18. Park IK, Sungkyunkwan University (Korea), Ph.D Thesis (2015).
  19. Nam JD, Kim DK, Nam JH, WO2014038896 (2013).
  20. Luong ND, Binh NTT, Duong LD, Kim DO, Kim DS, Lee SH, Kim BJ, Lee YS, Nam JD, Polym. Bull., 68, 870 (2011)
  21. Deka BK, Maji TK, Mandal M, Polym. Bull., 67(9), 1875 (2011)
  22. Mendez JA, Vilaseca F, Pelach MA, Lopez JP, Barbera L, Turon X, Girones J, Mutje P, J. Appl. Polym. Sci., 105(6), 3588 (2007)
  23. Bullions TA, Gillespie RA, Price-O'Brien J, Loos AC, J. Appl. Polym. Sci., 92(6), 3771 (2004)
  24. Kim JH, Ryu YK, Park JY, Polym. Korea, 22(6), 979 (1998)
  25. Zhao-Xia G, Alessandro, Eur. Polym. J., 27, 1177 (1991)