화학공학소재연구정보센터
Journal of Materials Science, Vol.29, No.23, 6167-6174, 1994
Hot Workability of an Al-Mg Alloy Aa5182 with 1-Wt-Percent Cu
A comparative study of the hot workability of two aluminium alloys, alloy AA5182 used for automotive applications and a variant modified with 1 wt% copper, has been carried out. Hot torsion tests were performed on both alloys subjected to two different heat treatments : a low temperature preheat to 450 degrees C and a high temperature preheat at 540 degrees C. The results from the torsion experiments are interpreted in terms of microstructural features. Both treatments produce the same strength, but the high temperature preheat leads to better ductility. This improvement is related to the homogenization of solute elements in the matrix; and, concerning AA5182 + Cu, also to the dissolution of a non-equilibrium Al-Mg-Cu ternary eutectic present in the as-cast microstructure. The precipitation of (Fe, Mn)AI, precipitates in the matrix of both alloys is induced by the high temperature heat treatment. Comparison of the results obtained by hot torsion shows that at low deformation rates AA5182 + Cu has better ductility than the classical alloy, but its ductility is lower at strain rates above 0.6-0.8 s(-1). The null ductility transition temperature is Tower compared with that in the classical alloy, restricting the range of hot working temperatures. Inside this range the strength of both alloys is approximately the same, although the strain rate sensitivity coefficient is increased by copper additions. The experimental strength values follow the classical sinus-hyperbolic constitutive equation for hot working.