화학공학소재연구정보센터
Chemical Engineering Journal, Vol.285, 660-670, 2016
Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water
Bentazon (BTZ) in water, a broadly used herbicide in agriculture, is toxic to human beings and has a negative impact on ecosystem. In this study, zero-valent iron (ZVI) activation of persulfate (PS) for the oxidation of BTZ was investigated. More active sulfate radicals produced from the system were principally responsible for the BTZ degradation. The BTZ removal well followed a pseudo-first-order (PFO) kinetics pattern. Key factors affecting the treatment were tested, including ZVI concentration, PS dose, initial BTZ concentration, initial solution pH, temperature and common coexisting ions in water. Under the optimal ZVI (4.477 mM) and PS (0.262 mM) concentrations, 0.021 mM BTZ was totally removed at an initial pH <= 7. Generally, lower BTZ concentration, lower pH and higher temperature favored the treatment. Different coexisting ions exhibited different effects. Al3+, Cl- and NO3- improved the treatment; NH4+, Ca2+, and Mg2+ did not significantly influence the BTZ removal; and, Mn2+, Cu2+, CO32-, HCO3-, PO43-, HPO42- and H2PO4- inhibited the BTZ degradation. Most of BTZ were not mineralized, and instead degraded into three major degradation products including 2,1,3-benzothialiazin-4(3H)-one-2,2-dioxide (P1, C7H6N2O3S), 2-aminobenzoic acid (anthranilic acid) (P3, C7H7NO2), and 2-amino-2-sulfobenzoic acid (P5, C7H7NO5S). This study demonstrates that ZVI/PS is a viable alternative for controlling BTZ-induced water pollution. (C) 2015 Elsevier B.V. All rights reserved.