화학공학소재연구정보센터
Automatica, Vol.62, 292-303, 2015
Estimation for decentralized safety control under communication delay and measurement uncertainty
This paper addresses the design of a decentralized safety controller for two agents, subject to communication delay and imperfect measurements. The control objective is to ensure safety, meaning that the state of the two-agent system does not enter an undesired set in the state space. Assuming that we know a feedback map designed for the delay free-case, we propose a state estimation strategy which guarantees control agreement between the two agents. We present an estimation technique for bounded communication delays, assuming that the agents share the same internal clock, and extend it for infinitely-distributed communication delays by determining a lower bound for the probability of safety. We also explain how the proposed approach can be extended to a general system of N agents and discuss efficient computation of our estimation strategy. Performance of the controller and relevance of the proposed approach are discussed in light of simulations performed for a collision avoidance problem between two semi-autonomous vehicles at an intersection. (C) 2015 Elsevier Ltd. All rights reserved.