Applied Surface Science, Vol.358, 356-362, 2015
Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration
In order to overcome the intrinsic drawback of pristine g-C3N4, we prepared g-C3N4 nanosheets with enhanced photocatalytic performance by Ag nanoparticles decoration using urea as the precursor. It was revealed that the monodispersed Ag nanoparticles were deposited on the surface of g-C3N4 nanosheets. The Ag/g-C3N4 nanocomposites were applied in removal of NO in air under visible light irradiation. The results showed that the decoration of Ag nanoparticles not only enhanced the photocatalytic activity of g-C3N4 nanosheets, but also benefited the oxidation of NO to final products. The increased visible light absorption arising from the surface plasmon resonance of Ag and improved separation and transfer of photoinduced carriers over Ag/g-C3N4 composites were demonstrated by the UV-vis diffuse reflectance spectra and photoluminescence spectra, respectively. It was therefore proposed that the enhanced photocatalytic activity of Ag/g-C3N4 composites could be attributed to the extended light response range and enhanced charge separation due to the introduction of Ag nanoparticles. (C) 2015 Elsevier B.V. All rights reserved.
Keywords:Ag/g-C3N4 composites;Visible light photocatalysis;Surface plasmon resonance;Charge separation and transfer;NOx removal