Applied Surface Science, Vol.357, 2022-2027, 2015
Synthesis and chemical modifications of in-situ grown anatase TiO2 microspheres with isotropically exposed {001} facets for superhydrophobic and self-cleaning properties
Excellent and robust hydrophobic materials generally benefit from specifically exposed surfaces i.e. always the low-energy surfaces, and well-defined micro/nano-structures that are achieved through advanced facilities and complicated process with a high cost. We hereof demonstrate that the super-hydrophobicity and further self-cleaning properties are also attainable based on high-energy crystalline facets by an appropriate chemical modification. Specifically, anatase TiO2 microspheres were large-scale synthesized to exhibit isotropically exposed high-energy {0 0 1} facets through optimizing the HF/H2O2/H2O ratio during hydrothermal processes. The formation of the microspheres was uncovered to be an in-situ "growth-cum-assembly" grown mechanism. Such high-energy {0 0 1} facets facilitate the strong coupling between the resultant TiO2 microspheres and the modifier (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) because the {0 0 1} facets offer abundant active sites for chemical bonding, showing great merits for superhydrophobicity (with water contact angle of 154 +/- 2 degrees, 6 mu l droplets), and further stably surface self-cleaning i.e. easily removing surface contamination (e.g. Al2O3 powders). This integrated strategy represents a milestone in design and fabrication of delicate composites with high-energy surfaces for specific functions and properties. (C) 2015 Elsevier B.V. All rights reserved.
Keywords:In-situ grown;Anatase TiO2 microspheres;Isotropically exposed {001} facets;Superhydrophobic;Self-cleaning