Applied Surface Science, Vol.357, 583-592, 2015
Synthesis of silver nanostructures by simple redox under electrodeposited copper microcubes and the orient attachment growth of 2D silver
Copper microcubes about 500 nm were electrodeposited on ITO glasses. Silver nanoparticles, netty consist of short nanorods or nanowires, nanosheets with thickness about 40 nm, were successfully obtained by immersing ITOs with different concentration of AgNO3 solution. XRD, SEM and TEM were applied to characterize the products. Silver ions were initially reduced on the surface of copper, and then gradually decomposed the copper. Cuprous oxide intermediate was found to participate in the redox reaction. Both agglomerates on the cubes and escaped reductant nanoparticles act as the positions for anisotropic growth. Based on the experimental results, the roles of three kinds of cubes are discussed in preparing the nanosheets before proposing the possible growth process. Oriented attachment influenced and controlled the final shapes, such as layered nanonets, nanoplates and nanosheets. Big nanoparticles were inclined to link as nanowires, netty and even 2D porous structure consisted of 'nanosnakes', small reductant nanoparticles with silver around absorbed on the edge of silver nanoplate and further accelerated the extension of nanoplate until worked out, holes on the nanoplate confirmed that the adsorbed matters could be reductant nanoparticles. Reductant nanoparticles can also be exhausted before silver nanoparticles and nanoflakes absorbed on the growth positions. (C) 2015 Elsevier B.V. All rights reserved.