화학공학소재연구정보센터
Applied Surface Science, Vol.356, 599-609, 2015
Bioactive (Si, O, N)/(Ti, O, N)/Ti composite coating on NiTi shape memory alloy for enhanced wear and corrosion performance
In this investigation, (Si, O, N)/(Ti, O, N)/Ti composite coating was synthesized on a NiTi shape memory alloy (SMA) substrate (50.8 at.% Ni) via plasma immersion ion implantation and deposition (PIIID) followed by magnetron sputtering, with the aim of promoting bioactivity and biocompatibility of NiTi SMAs. Nano featured (Si, O, N)/(Ti, O, N)/Ti coating was approximate 0.84 +/- 0.05 mu m in thickness, and energy dispersive X-ray (EDX) spectroscopy showed that Ni element was depleted from the surface of coated samples. X-ray diffraction (XRD) did not identify the phase composition of the (Si, O, N)/(Ti, O, N)/Ti coating, probably due to its thin thickness and poor crystalline resulting from low-temperature coating processes (<200 degrees C). X-ray photoelectron spectroscopy (XPS) analyses confirmed that a Ni-free surface was formed and Si element was incorporated into the composite coating via the magnetron sputtering process. Additionally, phase transformation behaviors of uncoated and coated NiTi SMA samples were characterized using differential scanning calorimetry (DSC). Wear and corrosion resistance of uncoated and coated NiTi SMA samples were evaluated using ball-on-disc tests and potentio-dynamic polarization curves, respectively. The (Si, O, N)/(Ti, O, N)/Ti coated NiTi SMA samples showed enhanced wear and corrosion resistance. Furthermore, the (Si, O, N)/(Ti, O, N)/Ti composite coating facilitated apatite formation in simulated body fluid (SBF) and rendered NiTi SMA bioactivity. (C) 2015 Elsevier B.V. All rights reserved.