Applied Surface Science, Vol.355, 959-968, 2015
Influence of triblock copolymer (pluronic F127) on enhancing the physico-chemical properties and photocatalytic response of mesoporous TiO2
The utilization of triblock copolymer, pluronic F127 as a structure directing agent for the preparation of TiO2 played an important role in enhancing the photocatalytic degradation rate of atrazine by a factor of 1.7. The mesoporous F127-TiO2 showed significant modification of morphology, particle and crystallite size, and presence of defect energy belt within the catalyst forbidden band as proven via photoluminescence spectra and x-ray photon spectroscopy. Hence the photogenerated carriers have longer lifespan to migrate to the catalyst surface for redox activities. Furtherance, surface reactive {0 0 1} facets proven by the formation of new geometrical single crystal of square and rhombus surfaces in F127-TiO2 facilitates atrazine degradation as well. The increased surface area of F127-TiO2 promotes greater atrazine absorption, thus governs improved interaction between absorbed atrazine molecules and surface generated active radicals as a pre-requisite for good photocatalytic activity. Interestingly, using the same synthesis procedure, it was observed that the addition of pluronic F127 significantly affects anatase crystal structure as opposed to the more thermodynamically stable rutile, generating 61% and 25% of total crystallite size modification for anatase and rutile, respectively. However, there were no changes on the final composition of anatase and rutile crystal structure. In overall, enhancement of the photocatalytic degradation of atrazine is ruled out to the following factors (1) modification of geometrical structures and size, (2) narrowing of band gap due to defect energy belt, (3) longer lifespan of photoexcited charges to the catalyst surface, (4) enhanced surface textural properties and (5) increased exposure of reactive {0 0 1} facets, which were all observed in F127-TiO2. (C) 2015 Elsevier B.V. All rights reserved.