화학공학소재연구정보센터
Applied Surface Science, Vol.355, 461-472, 2015
Research and application of surface heat treatment for multipulse laser ablation of materials
This study analysed a laser ablation platform and built heat transfer equations for multipulse laser ablation of materials. The equations include three parts: laser emission after the material melt and gasification; end of laser emission after the material melts and there is the presence of a super-hot layer and solid-phase heat transfer changes during material ablation. For each of the three parts, the effects of evaporation, plasma shielding and energy accumulation under the pulse interval were considered. The equations are reasonable, and all the required parameters are only related to the laser parameters and material properties, allowing the model to have a certain versatility and practicability. The model was applied for numerical simulation of the heat transfer characteristics in the multipulse laser ablation of bronze and diamond. Next, experiments were conducted to analyse the topography of a bronze-bonded diamond grinding wheel after multipulse laser ablation. The theoretical analysis and experimental results showed that multipulse laser can merge the truing and dressing on a bronze-bonded diamond grinding wheel. This study provides theoretical guidance for optimising the process parameters in the laser ablation of a bronze-bonded diamond grinding wheel. A comparative analysis showed that the numerical solution to the model is in good agreement with the experimental data, thus verifying the correctness and feasibility of the heat transfer model. (c) 2015 Elsevier B.V. All rights reserved.