화학공학소재연구정보센터
Applied Surface Science, Vol.355, 388-397, 2015
Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications - Physiochemical and biological evaluation
The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5 alpha was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal properties. What is more, considering very good mechanical parameters of these Ag including gradient a-C:H/Ti coatings, they constitute an excellent material for biomedical application in e.g. orthopedics or dentistry. (c) 2015 Elsevier B.V. All rights reserved.