Applied Surface Science, Vol.353, 1087-1094, 2015
Removal of arsenate by ferrihydrite via surface complexation and surface precipitation
In this study, macroscopic and spectroscopic experimental methods accurately modeled the sorption process of arsenate on ferrihydrite. EXAFS, X-ray diffraction and infrared (IR) spectroscopy indicated that the behavior of As(V) adsorption onto ferrihydrite took place mainly via surface complexation and surface precipitation at acidic pH (3.0-6.0), while the surface precipitation was dominated at longer time intervals and higher Fe3+ concentration. The macroscopic competitive adsorption experiment between arsenate with phosphate indicated two types of adsorption sites existing on the surface of ferrihydrite, i.e., non-exchangeable sites, which are responsible for a rapid surface complex formation; and exchangeable sites for a slow build-up of surface precipitates. In the slow build-up precipitates, the As(V) surface coverage (mmol/g) exhibited a good linear relationship (R-2 = 0.952) with the amount of dissolved Fe3+. Three steps are involved during the process of surface precipitation, i.e., (1) an initial uptake of As(V) via surface complexation; (2) re-adsorption of Fe3+ leaching from ferrihydrite on the surface complex; and (3) As(V) adsorption via surface complexation again and finally forming the surface precipitate. (C) 2015 Elsevier B.V. All rights reserved.