화학공학소재연구정보센터
Applied Surface Science, Vol.351, 655-661, 2015
Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission
Synthesis of bright white-light emitting Mn and Cu co-doped ZnSe/ZnS core/shell quantum dots (QDs) (Cu,Mn:ZnSe/ZnS) was reported. Water-soluble ZnSe-based QDs with Mn and Cu doping were prepared using a versatile hot-injection method in aqueous solution with a microwave-assisted approach. Influence of the Se/S ratio, stabilizer, refluxing time and the concentration of Cu/Mn dopant ions on the particle size and photoluminescence (PL) were investigated. The as-prepared QDs in the different stages of growth were characterized by X-ray powder diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), UV-visible (UV-vis) spectrophotometer, and fluorescence spectrophotometer. It is found that these ZnSe-based QDs synthesized under mild conditions exhibit emission in the range of 390-585 nm. The PL quantum yield (QY) of the as-prepared water-soluble ZnSe QDs can be up to 24.3% after the UV-irradiation treatment. The band-gap emission of ZnSe is effectively restrained through Mn and Cu doping. The refluxing time influences the doping of not only Mn, but also Cu, which leads to the best refluxing time of Mn:ZnSe and the red-shift of the emission of Cu:ZnSe d-dots. Co-doping induced white-light emission (WLE) from Cu,Mn:ZnSe/ZnS core/shell QDs were obtained, which can offer the opportunity for future-generation white-light emitting diodes (LEDs). (C) 2015 Elsevier B.V. All rights reserved.