Applied Surface Science, Vol.363, 451-458, 2016
Facile synthesis of hexagonal-shaped polypyrrole self-assembled particles for the electrochemical detection of dopamine
Nanomaterials have been used as an electroactive medium to enhance the efficiency of bio/chemical sensors, primarily when synergy is reached upon mixing different materials. In this study, we report on the facile synthesis of hexagonal-shaped plate-like polypyrrole (PPY-IC) prepared through inclusion polymerization of the host-guest pyrrole monomeric inclusion complex of beta-cyclodextrin (beta-CD) to be used in the detection of the neurotransmitter dopamine (DA). The amount of the monomer complex plays a crucial role in the fabrication of well-defined hexagonal-shaped PPY-IC through intermolecular interactions such as pi-pi interactions and hydrogen bonding between the beta-CD and PPY. The microstructure and morphology of the PPY-IC were examined by using various analytical techniques and a tentative mechanism for the growth process proposed which elucidates the formation of the hierarchical structure of the PPY-IC. Cyclo-voltammetry was performed with a PPY-IC modified glassy carbon electrode (GCE) for the electrochemical detection of DA. The concepts behind the novel architecture of the PPY-IC modified electrodes have potential for the production of materials to be used in electrochemical sensors and biosensors. (C) 2015 Elsevier B.V. All rights reserved.