화학공학소재연구정보센터
AAPG Bulletin, Vol.100, No.1, 63-100, 2016
Cretaceous-Cenozoic burial and exhumation history of the Chukchi shelf, offshore Arctic Alaska
Apatite fission track (AFT) and vitrinite reflectance data from five exploration wells and three seafloor cores illuminate the thermal history of the underexplored United States Chukchi shelf. On the northeastern shelf, Triassic strata in the Chevron 1 Diamond well record apatite annealing followed by cooling, possibly during the Triassic to Middle Jurassic, which is a thermal history likely related to Canada Basin rifting. Jurassic strata exhumed in the hanging wall of the frontal Herald Arch thrust fault record a history of probable Late Jurassic to Early Cretaceous structural burial in the Chukotka fold and thrust belt, followed by rapid exhumation to near-surface temperatures at 104 +/- 30 Ma. This history of contractional tectonism is in good agreement with inherited fission track ages in low thermal-maturity, Cretaceous-Cenozoic strata in the Chukchi foreland, providing complementary evidence for the timing of exhumation and suggesting a source-to-sink relationship. In the central Chukchi foreland, inverse modeling of reset AFT samples from the Shell 1 Klondike and Shell 1 Crackerjack wells reveals several tens of degrees of cooling from maximum paleo-temperatures, with maximum heating permissible at any time from about 100 to 50 Ma, and cooling persisting to as recent as 30 Ma. Similar histories are compatible with partially reset AFT samples from other Chukchi wells (Shell 1 Popcorn, Shell 1 Burger, and Chevron 1 Diamond) and are probable in light of regional geologic evidence. Given geologic context provided by regional seismic reflection data, we interpret these inverse models to reveal a Late Cretaceous episode of cyclical burial and erosion across the central Chukchi shelf, possibly partially overprinted by Cenozoic cooling related to decreasing surface temperatures. Regionally, we interpret this kinematic history to be reflective of moderate, transpressional deformation of the Chukchi shelf during the final phases of contractional tectonism in the Chukotkan orogen (lasting until similar to 70 Ma), followed by renewed subsidence of the Chukchi shelf in the latest Cretaceous and Cenozoic. This history maintained modest thermal maturities at the base of the Brookian sequence across the Chukchi shelf, because large sediment volumes bypassed to adjacent depocenters. Therefore, the Chukchi shelf appears to be an area with the potential for widespread preservation of petroleum systems in the oil window.