화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.99, No.19, 8225-8234, 2015
Excessive precipitation of CaCO3 as aragonite in a continuous aerobic granular sludge reactor
A hybrid airlift reactor was adopted to retain aerobic granules in the reactor successfully for continuous operation. It was found that aerobic granules maintained excellent physical structure stability in the continuous-flow reactor with reactor performance as good as batch operation. However, flocs appeared after batch operation was switched to continuous operation, and chemical oxygen demand (COD) in the wastewater was thus removed by co-existed granules and flocs in the reactor. Furthermore, excessive precipitation of CaCO3 as needled shaped aragonite in the continuous aerobic granular sludge reactor was observed, which led to the further enhancement of settling ability of granules with sludge volume index (SVI) reduction from 32 to 2 ml g(-1) but specific oxygen utilization rate (SOUR) decrease from 61 to 23 mg O-2 g(-1) MLVSS h(-1). Thus, apart from the physical structure stability, bioactivity stability of granules should be also considered as an important parameter to evaluate the continuous operation of aerobic granular sludge. Furthermore, the decrease in granule polysaccharide content implied that protein was more important for aragonite precipitation. The excessive aragonite precipitation in the continuous-flow reactor could be due to the competition between flocs and granules. In addition, the degradation of polysaccharide in aerobic granules under a continuous-flow mode may also contribute to excessive aragonite precipitation.