Applied Energy, Vol.161, 101-111, 2016
Improving urban bus emission and fuel consumption modeling by incorporating passenger load factor for real world driving
Vehicle Specific Power (VSP) has been increasingly used as a good indicator for the instantaneous power demand on engines for real world driving in the field of vehicle emission and fuel consumption modeling. A fixed vehicle mass is normally used in VSP calculations. However, the influence of passenger load was always been neglected. The major objective of this paper is to quantify the influence of passenger load on diesel bus emissions and fuel consumption based on the real-world on-road emission data measured by the Portable Emission Measurement System (PEMS) on urban diesel buses in Nanjing, China. Meanwhile, analyses are conducted to investigate whether passenger load affected the accuracy of emission and fuel consumption estimations based on VSP. The results show that the influence of passenger load on emission and fuel consumption rates were related to vehicle's speed and acceleration. As for the distance-based factors, the influence of passenger load Was not obvious when the buses were driving at a relative high speed. However the effects of passenger load were significant when the per-passenger factor was used. Per-passenger emission and fuel consumption factors decreased as the passenger load increased. It was also found that the influence of passenger load can be omitted in the emission and fuel consumption rate models at low and medium speed bins but has to be considered in the models for high speed and VSP bins. Otherwise it could lead to an error of up to 49%. The results from this research will improve the accuracy of urban bus emission and fuel consumption modeling and can be used to improve planning and management of city buses and thus achieve energy saving and emission reduction. (C) 2015 Elsevier Ltd. All rights reserved.