화학공학소재연구정보센터
Applied Catalysis B: Environmental, Vol.185, 281-294, 2016
Bimetallic Au-Cu, Au-Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol
This paper interrogates for the first time the catalytic properties of bimetallic Au-Cu/MWCNTs and Au-Ni/MWCNTs catalysts in oxy-steam reforming of methanol. X-ray diffraction (XRD), specific surface area and porosity, scanning electron microscopy with X-ray microanalysis (SEM-EDS), thermo-gravimetric analysis, temperature programmed desorption of ammonia and X-ray photoelectron spectroscopy (XPS) were used to characterize the MWCNT supported catalysts. A significant impact of Au-Cu and Au-Ni alloy phases on the selectivity to hydrogen formation of the bimetallic catalysts in oxy-steam reforming of methanol was demonstrated. The Au Cu/MWCNTs catalyst exhibited higher selectivity to hydrogen formation and lower selectivity to carbon monoxide formation. Whereas the introduction of copper, nickel and/or gold phase into MWCNTs facilitated thermal decomposition of the nanomaterial. The acidity data correlate well with the catalytic activity results. The spillover effect between copper (II) oxide and metallic gold or nickel (II) oxide and metallic gold was proven. Reactivity investigation on bimetallic 1%Au-20%Ni/MWCNTs catalyst used for oxy-steam reforming of methanol reaction confirmed the possibility of application of this system as a electrode material for fuel cell technology. (C) 2015 Elsevier B.V. All rights reserved.