Applied Catalysis A: General, Vol.502, 18-26, 2015
Synthesis of gamma-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts
Ni/Al2O3 catalysts were tested for the hydrogenation of levulinic acid (LA) to gamma-valerolactone (GVL) as an important bio-based platform molecule for chemical products based on renewable feedstocks. The catalysts were prepared by wet impregnation, incipient wetness impregnation, precipitation, and flame spray pyrolysis; both the influence of different solvents (monovalent alcohols and water) as well as solvent free reaction conditions were screened in batch autoclaves. Whereas alcohols led to a number of side reactions that could only be suppressed by high hydrogen pressures (>20 bar), water as solvent resulted in a GVL selectivity of 100%. The GVL yields reached 57%. Further improvement was achieved without any solvent, whereby the GVL yield increased to 92% at 100% LA conversion. Reuse of the Ni catalysts resulted in a significant drop in activity. The catalysts were thoroughly characterized by temperature programmed reduction (TPR), X-ray diffraction (XRD), linear combination analysis of X-ray absorption near edge structure (XANES) spectra and extended X-ray absorption fine structure (EXAFS). The results indicated that incorporated Ni2+, as present in flame-derived catalysts, was less active for GVL synthesis compared to supported Ni particles, as present in the wet impregnated catalyst. (C) 2015 Elsevier B.V. All rights reserved.