화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.12, 719-726, December, 2015
수계 Cu 나노입자 잉크에서 Poly(styrene-co-maleic acid) 접착 증진제가 잉크 레올로지와 인쇄패턴의 접착력에 미치는 영향
Effects of Poly(Styrene-Co-Maleic acid) as Adhesion Promoter on Rheology of Aqueous Cu Nanoparticle Ink and Adhesion of Printed Cu Pattern on Polyimid Film
E-mail:
For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the “Newtonian flow” and has a low viscosity under 10 mPa·S, which is applicable to inkjet printing. The Cu patterns with a linewidth of 50~60 μm are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-comaleic acid)-free inks. The resistivities of Cu films are measured to be 10~15 μΩ·cm at annealing temperature of 300 ℃.
  1. Jeong S, Song HC, Lee WW, Lee SS, Choi Y, Son W, Kim ED, Paik CH, Oh SH, Ryu BH, Langmuir, 27(6), 3144 (2011)
  2. Choi Y, Hong S, Langmuir, 31, 8101 (2015)
  3. Draper GL, Dharmadasa R, Staats ME, Lavery BW, Druffel T, ACS Appl. Mater. Interfaces, 7, 16478 (2015)
  4. Park HJ, Kang MG, Ahn SH, Guo LJ, Adv. Mater., 22(35), E247 (2010)
  5. Li YN, Wu YL, Ong BS, J. Am. Chem. Soc., 127(10), 3266 (2005)
  6. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo P, Science, 290, 2123 (2000)
  7. Holman RK, Uhland SA, Cima MJ, Sachs E, J. Colloid Interface Sci., 247(2), 266 (2002)
  8. Chantal P, Robert J, Arnold K, Olga M, Julie F, Sylvie L, Patrick M, Org. Electron., 15, 1836 (2014)
  9. Buffat P, Borel JP, Phys. Rev., A -At. Mol. Opt., 13, 2287 (1976)
  10. Jeong S, Woo K, Kim D, Lim S, Kim JS, Shin H, Xia Y, Moon J, Adv. Funct. Mater., 18(5), 679 (2008)
  11. Gamerith S, Klug A, Scheiber H, Scherf U, Moderegger E, List EJW, Adv. Funct. Mater., 17(16), 3111 (2007)
  12. Woo K, Kim D, Kim JS, Lim S, Moon J, Langmuir, 25(1), 429 (2009)
  13. de Gans BJ, Schubert US, Langmuir, 20(18), 7789 (2004)
  14. Soltman D, Subramanian V, Langmuir, 24(5), 2224 (2008)
  15. Prucek R, Kvitek L, Panacek A, Vancurova L, Soukupova J, Jancik D, Zboril RJ, Mater. Chem., 19, 8463 (2009)
  16. Escaig B, J. de Physique IV, 03(C7), C7-753 (1993)
  17. Venables JD, J. Mater. Sci., 19, 2431 (1984)
  18. Ramarathnam G, Libertucci M, Sadowski MM, North TH, Weld. Res. Suppl., 12, 483S (1992)