화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.12, 647-654, December, 2015
대류성 자기조립법을 통한 폴리스티렌 비드 대면적 단일층 형성에 미치는 공정 변수 효과
Effect of Processing Parameters on the Formation of Large Area Self-Assembled Monolayer of Polystyrene Beads by a Convective Self-Assembly Method
E-mail:
Self-assembled monolayers(SAM) of microspheres such as silica and polystyrene(PS) beads have found widespread application in photonic crystals, sensors, and lithographic masks or templates. From a practical viewpoint, setting up a highthroughput process to form a SAM over large areas in a controllable manner is a key challenging issue. Various methods have been suggested including drop casting, spin coating, Langmuir Blodgett, and convective self-assembly(CSA) techniques. Among these, the CSA method has recently attracted attention due to its potential scalability to an automated high-throughput process. By controlling various parameters, this process can be precisely tuned to achieve well-ordered arrays of microspheres. In this study, using a restricted meniscus CSA method, we systematically investigate the effect of the processing parameters on the formation of large area self-assembled monolayers of PS beads. A way to provide hydrophilicity, a prerequisite for a CSA, to the surface of a hydrophobic photoresist layer, is presented in order to apply the SAM of the PS beads as a mask for photonic nanojet lithography.
  1. Vlasov YA, Bo XZ, Sturn JC, Norris DJ, Nature, 414, 289 (2001)
  2. Joannoupolous JD, Meade RD, Winn JN, Photonic Crystals, Princeton University Press, New Jersey, (1995).
  3. Tarhan II, Watson GH, Phys. Rev. Lett., 76, 315 (1996)
  4. Miguez H, Meseguer F, Lopez C, Blanco A, Moya JS, Requena J, Mifsud A, Fornes V, Adv. Mater., 10(6), 480 (1998)
  5. Park SH, Xia YN, Langmuir, 15(1), 266 (1999)
  6. Spry RJ, Kosan DJ, Appl. Spectrosc., 40, 782 (1986)
  7. Willner I, Willner B, Pure Appl. Chem., 74, 1773 (2002)
  8. Holtz JH, Asher SA, Nature, 389(6653), 829 (1997)
  9. Haynes CL, Van Duyne RP, J. Phys. Chem. B, 105(24), 5599 (2001)
  10. Ormonde AD, Hicks ECM, Castillo J, Van Duyne RP, Langmuir, 20(16), 6927 (2004)
  11. Finkel NH, Prevo BG, Velev OD, He L, Anal. Chem., 77, 1088 (2005)
  12. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW, Science, 297, 820 (2002)
  13. Martin-Moreno L, Garcia-Vidal FJ, Lezec HJ, Degiron A, Ebbesen TW, Phys. Rev. Lett., 90, 167401 (2003)
  14. Mayoral R, Requena J, Moya JS, Lopez C, Cintas A, Miguez H, Meseguer F, Vazquez L, Holgado M, Blanco A, Adv. Mater., 9(3), 257 (1997)
  15. Vlasov YA, Astratov VN, Baryshev AV, Kaplyanskii AA, Karimov OZ, Limonov MF, Phys. Rev. E, 61, 5784 (2000)
  16. Wijnhoven JEGJ, Vos WL, Science, 281, 802 (1998)
  17. Muller M, Zentel R, Maka T, Romanov SG, Torres CMS, Adv. Mater., 12(20), 1499 (2000)
  18. Hulteen JC, Vanduyne RP, J. Vac. Sci. Technol. A, 13(3), 1553 (1995)
  19. Burmeister F, Schafle C, Keilhofer B, Bechinger C, Boneberg J, Leiderer P, Adv. Mater., 10(6), 495 (1998)
  20. Micheletto R, Fukuda H, Ohtsu M, Langmuir, 11(9), 3333 (1995)
  21. Deckman HW, Dunsmuir JH, Appl. Phys. Lett., 41, 377 (1982)
  22. Doron A, Katz E, Willner I, Langmuir, 11(4), 1313 (1995)
  23. Gao M, Zhang X, Yang B, Shen J, J. Chem. Soc.-Chem. Commun., 19, 2229 (1994)
  24. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K, Langmuir, 8, 3183 (1992)
  25. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K, Nature, 361, 26 (1993)
  26. Wu W, Katsnelson A, Memis OG, Mohseni H, Nanotechnology, 18, 485302 (2007)
  27. Kim J, Cho K, Kim I, Kim WM, Lee TS, Lee KS, Appl. Phys. Exp., 5, 025201 (2012)
  28. Chen K, Stoianov SV, Bangerter J, Robinson HD, J. Colloid Interface Sci., 344(2), 315 (2010)
  29. Dimitrov AS, Nagayama K, Langmuir, 12(5), 1303 (1996)
  30. Prevo BG, Velev OD, Langmuir, 20(6), 2099 (2004)
  31. Kumnorkaew P, Ee YK, Tansu N, Gilchrist JF, Langmuir, 24(21), 12150 (2008)
  32. Zhang XZ, Whitney AV, Zhao J, Hicks EN, Van Duyne RP, J. Nanosci. Nanotechnol., 6, 1 (2006)