화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.1, 62-67, February, 2016
정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교
Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon
E-mail:
초록
본 연구에서는 정수슬러지를 원료로 사용하여 펠렛형 흡착제를 제조하고 질소흡착법, XRD, XRF 및 암모니아 승온탈착법 등을 사용하여 물리.화학적 특성을 분석하였다. 정수슬러지 유래 펠렛형 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체의 흡착 성능을 비교하였다. 정수슬러지로부터 제조된 펠렛형 흡착제는 첨착활성탄보다 표면적과 기공부피는 훨씬 작지만 암모니아를 훨씬 더 많이 흡착할 수 있었다. 이는 정수슬러지로부터 제조된 펠렛형 흡착제 표면에 산점이 훨씬 더 많이 분포해 있어서 화학흡착에 의해 암모니아를 흡착하기 때문이다. 반면에, 산성가스인 포름알데히드 가스 흡착의 경우는 넓은 표면적과 발달된 기공으로 인하여 첨착활성탄의 흡착성능이 정수슬러지로부터 제조된 펠렛형 흡착제에 비해 훨씬 우수하였다.
In this study, a pellet-type adsorbent was prepared by using the water-treatment sludge as a raw material, and its physical and chemical properties were analyzed through N2-adsorption, XRD, XRF, and NH3-TPD measurements. Adsorption performance for gaseous ammonia and formaldehyde was compared between the pellet-type adsorbents prepared from water-treatment sludge and the impregnated activated carbon. Although the surface area and pore volume of the pellet-type adsorbent produced from water-treatment sludge were much smaller than those of the impregnated activated carbon, the pellet-type adsorbent produced from water-treatment sludge could adsorb ammonia gas even more than that of using the impregnated activated carbon. The pellet-type adsorbent prepared from water-treatment sludge showed a superior adsorption capacity for ammonia which can be explained by chemical adsorption ascribed to the higher amount of acid sites on the pellet-type adsorbent prepared from water-treatment sludge. In the case of formaldehyde adsorption, the impregnated activated carbon was far superior to the adsorbent made from the water-treatment sludge, which can be attributed to the increased surface area of the impregnated activated carbon.
  1. Kang KC, Kim YH, Kim J, Lee CH, Rhee SW, Appl. Chem. Eng., 22(2), 173 (2011)
  2. Kim IH, Study on the using water purifying AlPO4-based zeolite synthesis and ammonia removal, PhD Dissertation, Chonbuk National University, Chonbuk, Korea (2007).
  3. Kim JM, Kim MK, Lee JM, Lee CH, Lee SW, Choi DJ, La JM, Method of manufacturing a building material composition eco-friendly, Korea Patent 10-1041094 (2011).
  4. Xu GR, Yan ZC, Wang YC, Wang N, J. Hazard. Mater., 161(2-3), 663 (2009)
  5. Seredych M, Strydom C, Bandosz TJ, Waste Manage., 28, 1983 (2008)
  6. Lee JY, Park SH, Jeon JK, Yoo KS, Kim SS, Park YK, Korean J. Chem. Eng., 28(7), 1556 (2011)
  7. Pan ZH, Tian JY, Xu GR, Li JJ, Li GB, Water Res., 45, 819 (2011)
  8. Yuan WX, Bandosz TJ, Fuel, 86(17-18), 2736 (2007)
  9. Xu GR, Zhang WT, Li GB, Water Res., 39, 5175 (2005)
  10. Park N, Bae J, Lee CH, Jeon JK, Clean Technol., 19(2), 121 (2013)
  11. Bae J, Park N, Lee CH, Park YK, Jeon JK, Korean Chem. Eng. Res., 51(3), 352 (2013)
  12. Bae J, Park N, Kim G, Lee CH, Park YK, Jeon JK, Korean J. Chem. Eng., 31(4), 624 (2014)
  13. Park N, Bae J, Kim G, Jeon JK, Park YK, Lee CH, J. Nanosci. Nanotechnol., 15, 5321 (2015)
  14. Bandosz TJ, J. Colloid Interface Sci., 246(1), 1 (2002)
  15. Adib F, Bagreev A, Bandosz TJ, Langmuir, 16(4), 1980 (2000)
  16. Bagreev A, Bandosz TJ, Ind. Eng. Chem. Res., 41(4), 672 (2002)
  17. Leuch LML, Subrenat A, Cloirec PL, Environ. Technol., 26, 1243 (2005)
  18. Polovina M, Kaluderovic B, Babic B, J. Serb. Chem. Soc., 63, 653 (1998)
  19. Rouquerol J, Avnir D, Fairbridge CW, Everet DH, Haynes JH, Pernicone N, Ramsay J, Sing KS, Unger KK, Pure Appl. Chem., 66, 1739 (1994)
  20. Liu GZ, Mi ZT, Wang L, Zhang XW, Ind. Eng. Chem. Res., 44(11), 3846 (2005)
  21. Lee S, Kim J, Yun CY, Yi J, Clean Technol., 12(3), 175 (2006)
  22. Tanada S, Kawasaki N, Nakamura T, Araki M, Isomura M, J. Colloid Interface Sci., 214(1), 106 (1999)
  23. Ma C, Li X, Zhu T, Carbon, 49, 2869 (2011)