Applied Chemistry for Engineering, Vol.27, No.1, 62-67, February, 2016
정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교
Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon
E-mail:
초록
본 연구에서는 정수슬러지를 원료로 사용하여 펠렛형 흡착제를 제조하고 질소흡착법, XRD, XRF 및 암모니아 승온탈착법 등을 사용하여 물리.화학적 특성을 분석하였다. 정수슬러지 유래 펠렛형 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체의 흡착 성능을 비교하였다. 정수슬러지로부터 제조된 펠렛형 흡착제는 첨착활성탄보다 표면적과 기공부피는 훨씬 작지만 암모니아를 훨씬 더 많이 흡착할 수 있었다. 이는 정수슬러지로부터 제조된 펠렛형 흡착제 표면에 산점이 훨씬 더 많이 분포해 있어서 화학흡착에 의해 암모니아를 흡착하기 때문이다. 반면에, 산성가스인 포름알데히드 가스 흡착의 경우는 넓은 표면적과 발달된 기공으로 인하여 첨착활성탄의 흡착성능이 정수슬러지로부터 제조된 펠렛형 흡착제에 비해 훨씬 우수하였다.
In this study, a pellet-type adsorbent was prepared by using the water-treatment sludge as a raw material, and its physical and chemical properties were analyzed through N2-adsorption, XRD, XRF, and NH3-TPD measurements. Adsorption performance for gaseous ammonia and formaldehyde was compared between the pellet-type adsorbents prepared from water-treatment sludge and the impregnated activated carbon. Although the surface area and pore volume of the pellet-type adsorbent produced from water-treatment sludge were much smaller than those of the impregnated activated carbon, the pellet-type adsorbent produced from water-treatment sludge could adsorb ammonia gas even more than that of using the impregnated activated carbon. The pellet-type adsorbent prepared from water-treatment sludge showed a superior adsorption capacity for ammonia which can be explained by chemical adsorption ascribed to the higher amount of acid sites on the pellet-type adsorbent prepared from water-treatment sludge. In the case of formaldehyde adsorption, the impregnated activated carbon was far superior to the adsorbent made from the water-treatment sludge, which can be attributed to the increased surface area of the impregnated activated carbon.
- Kang KC, Kim YH, Kim J, Lee CH, Rhee SW, Appl. Chem. Eng., 22(2), 173 (2011)
- Kim IH, Study on the using water purifying AlPO4-based zeolite synthesis and ammonia removal, PhD Dissertation, Chonbuk National University, Chonbuk, Korea (2007).
- Kim JM, Kim MK, Lee JM, Lee CH, Lee SW, Choi DJ, La JM, Method of manufacturing a building material composition eco-friendly, Korea Patent 10-1041094 (2011).
- Xu GR, Yan ZC, Wang YC, Wang N, J. Hazard. Mater., 161(2-3), 663 (2009)
- Seredych M, Strydom C, Bandosz TJ, Waste Manage., 28, 1983 (2008)
- Lee JY, Park SH, Jeon JK, Yoo KS, Kim SS, Park YK, Korean J. Chem. Eng., 28(7), 1556 (2011)
- Pan ZH, Tian JY, Xu GR, Li JJ, Li GB, Water Res., 45, 819 (2011)
- Yuan WX, Bandosz TJ, Fuel, 86(17-18), 2736 (2007)
- Xu GR, Zhang WT, Li GB, Water Res., 39, 5175 (2005)
- Park N, Bae J, Lee CH, Jeon JK, Clean Technol., 19(2), 121 (2013)
- Bae J, Park N, Lee CH, Park YK, Jeon JK, Korean Chem. Eng. Res., 51(3), 352 (2013)
- Bae J, Park N, Kim G, Lee CH, Park YK, Jeon JK, Korean J. Chem. Eng., 31(4), 624 (2014)
- Park N, Bae J, Kim G, Jeon JK, Park YK, Lee CH, J. Nanosci. Nanotechnol., 15, 5321 (2015)
- Bandosz TJ, J. Colloid Interface Sci., 246(1), 1 (2002)
- Adib F, Bagreev A, Bandosz TJ, Langmuir, 16(4), 1980 (2000)
- Bagreev A, Bandosz TJ, Ind. Eng. Chem. Res., 41(4), 672 (2002)
- Leuch LML, Subrenat A, Cloirec PL, Environ. Technol., 26, 1243 (2005)
- Polovina M, Kaluderovic B, Babic B, J. Serb. Chem. Soc., 63, 653 (1998)
- Rouquerol J, Avnir D, Fairbridge CW, Everet DH, Haynes JH, Pernicone N, Ramsay J, Sing KS, Unger KK, Pure Appl. Chem., 66, 1739 (1994)
- Liu GZ, Mi ZT, Wang L, Zhang XW, Ind. Eng. Chem. Res., 44(11), 3846 (2005)
- Lee S, Kim J, Yun CY, Yi J, Clean Technol., 12(3), 175 (2006)
- Tanada S, Kawasaki N, Nakamura T, Araki M, Isomura M, J. Colloid Interface Sci., 214(1), 106 (1999)
- Ma C, Li X, Zhu T, Carbon, 49, 2869 (2011)