화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.27, No.1, 45-49, February, 2016
산화 그래핀에 의한 EDOT의 산화중합에 관한 연구
Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide
E-mail:
초록
과량의 GO 및 poly(4-styrene sulfonate) (PSS)의 존재 하에서 산화제 없이 3,4-ethylenedioxythiophene (EDOT)의 in-situ 중합 반응을 시도하였다. 반응물(GO-P)의 XPS, FT-IR 등의 분석을 통하여 산화제 없이도 모노머인 EDOT의 산화중합이 원활하게 진행되어 PEDOT/PSS가 합성되고 GO와 복합화된 것을 확인할 수 있었다. GO-P는 수분산성은 우수하였으나, 전기적 절연체인 GO가 42% 포함되어 있으므로 전기전도도는 15 S.m-1로 매우 낮았다. 그러나 GO-P 필름을 200 ℃에서 8 h 열처리하면 GO의 일부분이 환원되면서 전도도가 212 S.m-1까지 향상되었다.
In the presence of poly(4-styrene sulfonate) (PSS) and excess amount of graphene oxide (GO), we conducted in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) without an oxidant. XPS and IR spectroscopies of the product (GO-P) showed that PEDOT/PSS was successfully synthesized by oxidative polymerization of EDOT and hybridized with GO. GO-P displayed a stable aqueous suspension, however, the high content (42%) of GO in GO-P diminished electrical conductivity down to 15 S.m-1. Annealing of GO-P films at 200 ℃ for 8 hr induced partial reduction of GO and finally enhanced electrical conductivity up to 212 S.m-1.
  1. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  2. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
  3. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS, Polymer, 52(1), 5 (2011)
  4. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S, Prog. Mater. Sci., 56(8), 1178 (2011)
  5. Dreyer DR, Park SJ, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
  6. Taki K, Hosokawa K, Takagi S, Mabuchi H, Ohshima M, Macromolecules, 46(6), 2275 (2013)
  7. Dreyer DR, Jia HP, Bielawski CW, Angew. Chem.-Int. Edit., 122, 6965 (2010)
  8. Dreyer DR, Murali S, Zhu YW, Ruoff RS, Bielawski CW, J. Mater. Chem., 21, 3443 (2011)
  9. Dreyer DR, Jia HP, Todd AD, Geng JX, Bielawski CW, Org. Biomol. Chem., 9, 7292 (2011)
  10. Jo K, Lee T, Choi HJ, Park JH, Lee DJ, Lee DW, Kim BS, Langmuir, 27(5), 2014 (2011)
  11. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nquyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
  12. Wang S, Nai CT, Jiang XF, Pan YH, Tan CH, Nesladek M, Xu QH, Loh KP, J. Phys. Chem. Lett., 3, 2332 (2012)
  13. Sun D, Jin L, Chen Y, Zhang JR, Zhu JJ, Chem. Plus Chem., 78, 227 (2013)
  14. Zhou H, Yao W, Li G, Wang J, Lu Y, Carbon, 59, 495 (2013)
  15. Kirchmeyer S, Reuter K, J. Mater. Chem., 15, 2077 (2005)
  16. Louwet F, Groenendaal L, Dhaen J, Manca J, Luppen JV, Verdonck E, Leenders L, Synth. Met., 135-136, 115 (2003)
  17. Yoo HS, Park YS, Appl. Chem. Eng., 24(1), 93 (2013)
  18. Park NI, Lee SB, Lee SM, Chung D, Appl. Chem. Eng., 25(6), 581 (2014)
  19. Choi JW, Lee SB, Lee SM, Park WS, Chung DW, Appl. Chem. Eng., 26(3), 331 (2015)
  20. Lee SB, Lee SM, Park NI, Lee SH, Chung DW, Synth. Met., 201, 66 (2015)
  21. Yin B, Liu Q, Yang LY, Wu XM, Liu ZF, Hua YL, Yin SG, Chen YS, J. Nanosci. Nanotechnol., 10, 1934 (2010)
  22. Jo K, Lee T, Choi HJ, Park JH, Lee DJ, Lee DW, Kim BS, Langmuir, 27(5), 2014 (2011)
  23. Liu S, Tian JQ, Wang L, Luo YL, Sun XQ, Analyst, 136, 4898 (2011)
  24. Amaladass P, Clement JA, Mohanakrishnan AK, Tetrahedron, 63, 10363 (2007)
  25. Park NI, Park WS, Lee SB, Lee SM, Chung D, Appl. Chem. Eng., 26(1), 99 (2015)
  26. Friedel B, Keivanidis PE, Brenner TJK, Abrusci A, McNeill CR, Friend RH, Greenham NC, Macromolecules, 42(17), 6741 (2009)