Applied Chemistry for Engineering, Vol.27, No.1, 45-49, February, 2016
산화 그래핀에 의한 EDOT의 산화중합에 관한 연구
Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide
E-mail:
초록
과량의 GO 및 poly(4-styrene sulfonate) (PSS)의 존재 하에서 산화제 없이 3,4-ethylenedioxythiophene (EDOT)의 in-situ 중합 반응을 시도하였다. 반응물(GO-P)의 XPS, FT-IR 등의 분석을 통하여 산화제 없이도 모노머인 EDOT의 산화중합이 원활하게 진행되어 PEDOT/PSS가 합성되고 GO와 복합화된 것을 확인할 수 있었다. GO-P는 수분산성은 우수하였으나, 전기적 절연체인 GO가 42% 포함되어 있으므로 전기전도도는 15 S.m-1로 매우 낮았다. 그러나 GO-P 필름을 200 ℃에서 8 h 열처리하면 GO의 일부분이 환원되면서 전도도가 212 S.m-1까지 향상되었다.
In the presence of poly(4-styrene sulfonate) (PSS) and excess amount of graphene oxide (GO), we conducted in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) without an oxidant. XPS and IR spectroscopies of the product (GO-P) showed that PEDOT/PSS was successfully synthesized by oxidative polymerization of EDOT and hybridized with GO. GO-P displayed a stable aqueous suspension, however, the high content (42%) of GO in GO-P diminished electrical conductivity down to 15 S.m-1. Annealing of GO-P films at 200 ℃ for 8 hr induced partial reduction of GO and finally enhanced electrical conductivity up to 212 S.m-1.
- Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
- Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906 (2010)
- Potts JR, Dreyer DR, Bielawski CW, Ruoff RS, Polymer, 52(1), 5 (2011)
- Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S, Prog. Mater. Sci., 56(8), 1178 (2011)
- Dreyer DR, Park SJ, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
- Taki K, Hosokawa K, Takagi S, Mabuchi H, Ohshima M, Macromolecules, 46(6), 2275 (2013)
- Dreyer DR, Jia HP, Bielawski CW, Angew. Chem.-Int. Edit., 122, 6965 (2010)
- Dreyer DR, Murali S, Zhu YW, Ruoff RS, Bielawski CW, J. Mater. Chem., 21, 3443 (2011)
- Dreyer DR, Jia HP, Todd AD, Geng JX, Bielawski CW, Org. Biomol. Chem., 9, 7292 (2011)
- Jo K, Lee T, Choi HJ, Park JH, Lee DJ, Lee DW, Kim BS, Langmuir, 27(5), 2014 (2011)
- Stankovich S, Piner RD, Chen XQ, Wu NQ, Nquyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
- Wang S, Nai CT, Jiang XF, Pan YH, Tan CH, Nesladek M, Xu QH, Loh KP, J. Phys. Chem. Lett., 3, 2332 (2012)
- Sun D, Jin L, Chen Y, Zhang JR, Zhu JJ, Chem. Plus Chem., 78, 227 (2013)
- Zhou H, Yao W, Li G, Wang J, Lu Y, Carbon, 59, 495 (2013)
- Kirchmeyer S, Reuter K, J. Mater. Chem., 15, 2077 (2005)
- Louwet F, Groenendaal L, Dhaen J, Manca J, Luppen JV, Verdonck E, Leenders L, Synth. Met., 135-136, 115 (2003)
- Yoo HS, Park YS, Appl. Chem. Eng., 24(1), 93 (2013)
- Park NI, Lee SB, Lee SM, Chung D, Appl. Chem. Eng., 25(6), 581 (2014)
- Choi JW, Lee SB, Lee SM, Park WS, Chung DW, Appl. Chem. Eng., 26(3), 331 (2015)
- Lee SB, Lee SM, Park NI, Lee SH, Chung DW, Synth. Met., 201, 66 (2015)
- Yin B, Liu Q, Yang LY, Wu XM, Liu ZF, Hua YL, Yin SG, Chen YS, J. Nanosci. Nanotechnol., 10, 1934 (2010)
- Jo K, Lee T, Choi HJ, Park JH, Lee DJ, Lee DW, Kim BS, Langmuir, 27(5), 2014 (2011)
- Liu S, Tian JQ, Wang L, Luo YL, Sun XQ, Analyst, 136, 4898 (2011)
- Amaladass P, Clement JA, Mohanakrishnan AK, Tetrahedron, 63, 10363 (2007)
- Park NI, Park WS, Lee SB, Lee SM, Chung D, Appl. Chem. Eng., 26(1), 99 (2015)
- Friedel B, Keivanidis PE, Brenner TJK, Abrusci A, McNeill CR, Friend RH, Greenham NC, Macromolecules, 42(17), 6741 (2009)