- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.27, No.1, 1-9, February, 2016
미세조류와 박테리아의 공생 배양을 이용한 하폐수 고도처리
Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria
E-mail:
초록
미세조류와 박테리아의 공배양 시스템은 두 미생물종이 공생적 관계가 있다면 한 배양기에서 BOD와 영양염류의 동시 제거가 가능하다. 이때 영양염류는 미세조류의 바이오매스 성분으로 전환된다. 이 총설은 미세조류와 박테리아의 공생적 혼합배양을 이용한 하폐수처리, 특히 질소와 인의 제거에서의 중요성과 최근의 연구동향을 살펴보았다. 미세조류는 광합성을 통해 산소를 발생시키고 박테리아는 이 산소를 전자수용체로 이용하여 유기물의 산화분해에 활용할 수 있다. 호기성 박테리아가 유기물을 산화할 때 발생되는 CO2는 미세조류의 탄소원으로 섭취되어 탄소동화작용에 사용된다. 미세조류와 박테리아의 공배양은 상호 이익이 될 수도 있고 저해가 될 수도 있으므로 지속적인 영양염류제거를 위해서는 상호 이익이 되는 공생적 관계가 필수적으로 요구된다. 이를 위해서는 하폐수처리에 사용되는 상용적인 두 미생물 종의 선택이 중요하다.
The co-culture system of microalgae and bacteria enables simultaneous removal of BOD and nutrients in a single reactor if the pair of microorganisms is symbiotic. In this case, nutrients are converted to biomass constituents of microalgae. This review highlights the importance and recent researches using symbiotic co-culture system of microalgae and bacteria in wastewater treatment, focusing on the removal of nitrogen and phosphorus. During wastewater treatment, the microalgae produces molecular oxygen through photosynthesis, which can be used as an electron acceptor by aerobic bacteria to degrade organic pollutants. The released CO2 during the bacterial mineralization can then be consumed by microalgae as a carbon source in photosynthesis. Microalgae and bacteria in the co-culture system could cooperate or compete each other for resources. In the context of wastewater treatment, positive relationships are prerequisite to accomplish the sustainable removal of nutrients. Therefore, the selection of compatible species is very important if the co-culture has to be utilized in wastewater treatment.
- Aslan S, Kapdan IK, Ecol. Eng., 28, 64 (2006)
- Singh G, Thomas PB, Bioresour. Technol., 117, 80 (2012)
- Peng YZ, Wang XL, Li BK, Desalination, 189(1-3), 155 (2006)
- Clarens F, Resurreccion EP, White MA, Colosi LM, Environ. Sci. Technol., 44, 1813 (2010)
- Guo Z, Tong YW, J. Appl. Phycol., 26, 1483 (2013)
- Cai T, Park SY, Li Y, Renew. Sust. Energ. Rev., 19, 360 (2013)
- He PJ, Mao B, Lu F, Shao LM, Lee DJ, Chang JS, Bioresour. Technol., 146, 562 (2013)
- Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T, Bioresour. Technol., 101(1), 58 (2010)
- Munoz R, Guieysse B, Water Res., 40, 2799 (2006)
- Gonzalez-Fernandez C, Molinuevo-Salces B, Garcia-Gonzalez MC, Bioresour. Technol., 102(2), 960 (2011)
- Liang Z, Liu Y, Ge F, Xu Y, Tao N, Peng F, Wong M, Chemosphere, 92, 1383 (2013)
- Gonzalez LE, Bashan Y, Appl. Environ. Microbiol., 66, 1527 (2000)
- de-Bashan LE, Antoun H, Bashan Y, FEMS Microbiol. Ecol., 54, 197 (2005)
- Vasseur C, Bougaran G, Garnier M, Hamelin J, Leboulanger C, Le Chevanton M, Mostajir B, Sialve B, Steyer JP, Fouilland E, Bioresour. Technol., 119, 79 (2012)
- Rittmann BE, Biotechnol. Bioeng., 100(2), 203 (2008)
- Unnithan VV, Unc A, Smith GB, Algal. Res., 4, 35 (2014)
- Park Y, Je KW, Lee K, Jung SE, Choi TJ, Hydrobiologia, 598, 219 (2007)
- Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R, Biotechnol. Adv., 29, 896 (2011)
- Rhee GY, Limnol. Oceanogr., 17, 505 (1972)
- Liang Q, Renjun W, Peng Z, Ruinan C, Wenli Z, Liuqing T, Xuexi T, Acta Oceanol. Sin., 33, 135 (2014)
- Delucca R, McCracken MD, Hydrobiologia, 55, 71 (1977)
- Liu J, Lewitus AJ, Kempton JW, Wilde SB, Harmful Algae, 7, 184 (2008)
- Krometis LA, Characklis GW, Drummey PN, Sobsey MD, J. Water Health, 08, 44 (2010)
- Lee J, Cho DH, Ramanan R, Kim BH, Oh HM, Kim HS, Bioresour. Technol., 131, 195 (2013)
- Schumacher G, Blume T, Sekoulov I, Water Sci. Technol., 47, 195 (2003)
- Ribalet F, Intertaglia L, Lebaron P, Casotti R, Aquat. Toxicol., 86, 249 (2008)
- DellaGreca M, Zarrelli A, Fergola P, Cerasuolo M, Pollio A, Pinto G, J. Chem. Ecol., 36, 339 (2010)
- Fukami K, Nishijima T, Ishida Y, Hydrobiologia, 358, 185 (1997)
- Cole JJ, Ann. Rev. Ecol. Syst., 13, 291 (1982)
- Fergola P, Cerasuolo M, Pollio A, Pinto G, DellaGreca M, Ecol. Modell., 208, 205 (2007)
- Danger M, Oumarou C, Benest D, Lacroix G, Funct. Ecol., 21, 202 (2007)
- Lebsky V, Gonzalez-Bashan LE, Bashan Y, Can. J. Microbiol., 47, 1 (2001)
- Ma XC, Zhou WG, Fu ZQ, Cheng YL, Min M, Liu YH, Zhang YK, Chen P, Ruan R, Bioresour. Technol., 167, 8 (2014)
- Byappanahalli MN, Sawdey R, Ishii S, Shively DA, Ferguson JA, Whitman RL, Sadowsky MJ, Water Res., 43, 806 (2009)
- Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG, Nature, 438, 90 (2005)
- Bouteleux C, Saby S, Tozza D, Cavard J, Lahoussine V, Hartemann P, Mathieu L, Appl. Environ. Microbiol., 71, 734 (2005)
- Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE, Can. J. Microbiol., 40, 331 (1994)
- Mazur H, Konop A, Synak R, J. Appl. Phycol., 13, 35 (2001)
- Mouget JL, Dakhama A, Lavoie MC, Noue J, Fems Microbiol. Ecol., 18, 35 (1995)
- Zhang Y, Su H, Zhong Y, Zhang C, Shen Z, Sang W, Yan G, Zhou X, Water Res., 46, 5509 (2012)
- Rooney-Verga JN, Giewat MW, Savin MC, Sood S, LeGresley M, Martin JL, Microbiol. Ecol., 49, 163 (2005)
- Hernandez JP, de-Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y, Eur. J. Soil Biol., 45, 88 (2009)
- de-Bashan LE, Moreno M, Hernandez JP, Bashan Y, Water Res., 36, 2941 (2002)
- Riquelme CE, Interaction between Microalgae and Bacteria in Coastal Seawater. PhD Dissertation, Kyoto University, Japan (1988).
- Du J, Cheng S, Shao C, Lv Y, Pu G, Ma X, Jia Y, Tian X, Aquat. Ecol., 47, 303 (2013)
- Suminto I, Hirayama K, Chaetoceros gracilis. Fish. Sci., 62, 40 (1996)
- de-Bashan LE, Bashan Y, Bioresour. Technol., 101(6), 1611 (2010)
- Abed RMM, Int. Biodeterior. Biodegrad., 64, 58 (2010)
- Acien FG, Gonzalez CV, Fernandez JM, Gonzalez MG, Moreno J, Sierra E, Guerrero MG, Molina E, Nat. Biotechnol., 25, S265 (2009)
- Munoz R, Jacinto M, Guieysse B, Mattiasson B, Appl. Microbiol. Biotechnol., 67(5), 699 (2005)
- Tchobanoglous G, Burton, FL, Stensel HD, Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York, NY (2003).
- de Godos I, Vargas VA, Blanco S, Gonzalez MCG, Soto R, Garcia-Encina PA, Becares E, Munoz R, Bioresour. Technol., 101(14), 5150 (2010)
- Canizares-Villanueva RO, Rev. Latinoam. Microbiol., 42, 131 (2000)
- Mulbry W, Westhead EK, Pizarro C, Sikora L, Bioresour. Technol., 96(4), 451 (2005)
- Medina M, Neis U, Water Sci. Technol., 55, 165 (2007)
- Aziz MA, Ng WJ, Water Sci. Technol., 28, 71 (1993)
- Ogbonnna CJ, Yoshizawa1 H, Tanaka H, J. Appl. Phycol., 12, 277 (2000)
- Lee CS, Lee SA, Ko SR, Oh HM, Ahn CY, Water Res., 68, 680 (2015)
- Zhao X, Zhou Y, Huang S, Qiu DY, Schideman L, Chai XL, Zhao YC, Bioresour. Technol., 156, 322 (2014)
- Gonzalez C, Marciniak J, Villaverde S, Leon C, Garcia PA, Munoz R, Water Sci. Technol., 58, 95 (2008)
- Ren HY, Liu BF, Kong F, Zhao L, Ren N, Water Res., 85, 404 (2015)
- Mujtaba G, Rizwan M, Lee K, Biotechnol. Bioeng., 20(6), 1114 (2015)
- Kawai H, Grieco VM, Jureidini P, Environ. Technol. Lett., 5, 505 (1984)
- Mallick N, Rai LC, World J. Microbiol. Biotechnol., 10, 439 (1994)
- Zhang ED, Wang B, Wang QH, Zhang SB, Zhao BD, Bioresour. Technol., 99(9), 3787 (2008)
- Liu K, Li J, Qiao HJ, Lin A, Wang GC, Bioresour. Technol., 114, 26 (2012)
- Posadas E, Garcia-Encina PA, Soltau A, Dominguez A, Diaz I, Munoz R, Bioresour. Technol., 139, 50 (2013)
- Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH, Water Res., 45, 5925 (2011)
- Lananan F, Hamid SHA, Din WNS, Ali N, Khatoon H, Jusoh A, Endut A, Int. Biodeterior. Biodegrad., 95, 127 (2014)
- Hernandez D, Riano B, Coca M, Garcia-Gonzalez MC, Bioresour. Technol., 135, 598 (2013)