화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.33, 369-373, January, 2016
A facile synthesis of rutile-rich titanium oxide nanoparticles using reverse micelle method and their photocatalytic applications
E-mail:,
Flower-like shaped rutile-rich TiO2 nanoparticles were synthesized by the reaction of HCl with titanium diisopropoxide bis(acetylacetonate) immobilized in reverse micelles composed of oleic acid, water, and xylene. Brunauer Emmett Teller (BET) analysis showed large surface area of the synthesized TiO2 nanoparticles of 177.8 m2/g. We investigated the effect of the concentration of Ti precursor and role of oleic acid in the formation of TiO2 nanoparticles. Rutile-rich TiO2 nanoparticles with large surface area showed better photocatalytic activity in decomposing methyl orange under visible-light irradiation than anatase and rutile mixed phase TiO2 particles.
  1. Hagfeldt A, Gratzel M, Chem. Rev., 95(1), 49 (1995)
  2. Kamat PV, Chem. Rev., 93, 267 (1993)
  3. Lemon BI, Hupp JT, J. Phys. Chem. B, 103(19), 3797 (1999)
  4. O’regan B, Gratzel M, Nature, 353, 737 (1991)
  5. Yan SG, Prieskorn JS, Kim YJ, Hupp JT, J. Phys. Chem. B, 104(46), 10871 (2000)
  6. Iuchi KI, Ohko Y, Tatsuma T, Fujishima A, Chem. Mater., 16, 1165 (2004)
  7. Wagemaker M, van de Krol R, Kentgens APM, van Well AA, Mulder FM, J. Am. Chem. Soc., 123(46), 11454 (2001)
  8. Ni M, Leung MK, Leung DY, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
  9. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD, Appl. Catal. B: Environ., 125, 331 (2012)
  10. Pillai SC, Periyat P, George R, McCormack DE, Seery MK, Hayden H, Colreavy J, Corr D, Hinder SJ, J. Phys. Chem. C, 111, 1605 (2007)
  11. Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL, J. Am. Chem. Soc., 121(7), 1613 (1999)
  12. Liao J, Shi L, Yuan S, Zhao Y, Fang J, J. Phys. Chem., 113, 18778 (2009)
  13. Allam NK, Grimes CA, Langmuir, 25(13), 7234 (2009)
  14. Feldmann C, Jungk HO, Angew. Chem.-Int. Edit., 40, 359 (2001)
  15. Yoo KS, Lee TG, Kim J, Microporous Mesoporous Mater., 84, 211 (2005)
  16. Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T, Adv. Funct. Mater., 15(3), 503 (2005)
  17. Yu T, Park J, Moon J, An K, Piao Y, Hyeon T, J. Am. Chem. Soc., 129(47), 14558 (2007)
  18. Yu T, Moon J, Park J, Park YI, Na HB, Kim BH, Song IC, Moon WK, Hyeon T, Chem. Mater., 21, 2272 (2009)
  19. Lin J, Lin Y, Liu P, Meziani MJ, Allard LF, Sun YP, J. Am. Chem. Soc., 124(38), 11514 (2002)
  20. Stathatos E, Lianos P, Langmuir, 16(5), 2398 (2000)
  21. Wu MM, Long JB, Huang AH, Luo YJ, Feng SH, Xu RR, Langmuir, 15(26), 8822 (1999)
  22. Sing KS, Pure Appl. Chem., 57, 603 (1985)
  23. Datye AK, Riegel G, Bolton JR, Huang M, Prairie MR, J. Solid State Chem., 115, 236 (1995)
  24. Yu JG, Yu HG, Cheng B, Zhou MH, Zhao XJ, J. Mol. Catal. A-Chem., 253(1-2), 112 (2006)
  25. Joo J, Kwon SG, Yu T, Cho M, Lee J, Yoon J, Hyeon T, J. Phys. Chem. B, 109(32), 15297 (2005)
  26. Lin J, Yu JC, Lo D, Lam SK, J. Catal., 183(2), 368 (1999)
  27. Yu JC, Zhang L, Yu J, Chem. Mater., 14, 4647 (2002)
  28. Yu T, Lim B, Xia Y, Angew. Chem.-Int. Edit., 49, 4484 (2010)
  29. Lee J, Othman M, Eom Y, Lee T, Kim W, Kim J, Microporous Mesoporous Mater., 116, 561 (2008)
  30. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S, Angew. Chem.-Int. Edit., 114, 2935 (2002)
  31. Ding Z, Lu GQ, Greenfield PF, J. Phys. Chem. B, 104(19), 4815 (2000)
  32. Tahiri H, Serpone N, Mao R, J. Photochem. Photobiol. A-Chem., 93, 199 (1996)
  33. Zhang RB, Gao L, Mater. Res. Bull., 36(11), 1957 (2001)
  34. Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakatac T, Yanagida S, J. Mater. Chem., 11, 1694 (2001)
  35. Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44, 8269 (2005)