화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.33, 226-238, January, 2016
Agar based bimetallic nanoparticles as high-performance renewable adsorbent for removal and degradation of cationic organic dyes
E-mail:
Removal of toxic organic compounds from the industrial wastewater is currently one of the most important subjects in water pollution control. A highly efficient, effective and rapid polysaccharide (agar)-based adsorbent was synthesized by modifying monometallic/bimetallic nanoparticles (Fe, Cu, Pd, Fe/Cu and Fe/Pd) to remove cationic dyes (methylene blue, MB and rhodamine B, RhB). The effects of different parameters like initial contact time, solution pH value, temperature and amount of adsorbent on the adsorption capacity as well as dye removal capacity of the adsorbent were investigated. The maximum adsorption capacities of the agar@Fe/Pd nanoparticles based adsorbent for both MB and RhB were found 875.0 mg g-1 and 780.0 mg g-1, respectively. On the optimized parameter, the adsorbent shows a very high efficiency and rapid removal property for both the dyes. The adsorption follows the Freundlich isotherm model for the equilibrium process. The kinetic studies revealed that the adsorption of both the dyes followed the pseudo-first order kinetic model. Additionally, two different models, i.e. intraparticle diffusion and elovich model were also studied for adsorption of both the dyes. Similarly, the rate of degradation of MB and RhB on agar@Fe/Pd nanoparticles was also studied and their rate constants were found as 3.16 × 10-2 s-1 and 4.82 ×10-2 s-1, respectively. Furthermore, the regeneration experiments showed that the adsorbent could be reused for at least 20 cycles with very efficient dye removal capacity (90%) even in complex systems containing mixture of dyes, salt, and surfactant. Thus, the agar-based adsorbent has the potential in the fast and effective adsorption, removal and degradation of toxic dyes from industrial textile wastewater.
  1. World Health Organization (WHO), World Health Report: Reducing Risks, Promoting Healthy Life, World Health Organization (WHO), France, 2002, Retrieved 14 July 2009, from hhttp://www.who.int/whr/2002/en/whr02_en.pdfi.
  2. Lone MIZ, He L, Stoffella PJX, Yang E, J. Zhejiang Univ. Sci. B, 9, 210 (2008)
  3. Gupta VK, Pathaniac D, Agarwal S, Singh P, J. Hazard. Mater., 243, 179 (2012)
  4. Kumar KV, Ramamurthi V, Sivanesan S, J. Colloid Interface Sci., 284(1), 14 (2005)
  5. Umoren SA, Etim UJ, Israel AU, J. Mater. Environ. Sci., 4, 75 (2013)
  6. Jain R, Sharma N, Bhargava M, J. Sci. Ind. Res., 62, 1138 (2003)
  7. Sudarjanto G, Keller-Lehmann B, Keller J, J. Hazard. Mater., 138(1), 160 (2006)
  8. Duta A, Visa M, J. Photochem. Photobiol. A-Chem., 306, 21 (2015)
  9. Ghaedi M, Ansari A, Habibi MH, Habibi AR, J. Ind. Eng. Chem., 20(1), 17 (2014)
  10. Roosta M, Ghaedi M, Daneshfar A, Darafarin S, Sahraei R, Purkait MK, Ultrason. Sonochem., 21, 1441 (2014)
  11. Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Asghari A, Ultrason. Sonochem., 21, 242 (2014)
  12. Ghaedi M, Shojaeipour E, Ghaedi AM, Sahraei R, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 142, 135 (2015)
  13. Ahmadi K, Ghaedi M, Ansari A, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 136, 1441 (2015)
  14. Moghaddam SS, Moghaddam MRA, Arami M, J. Hazard. Mater., 175(1-3), 651 (2010)
  15. Li GT, Wang NG, Liu BT, Zhang XW, Desalination, 249(3), 936 (2009)
  16. Srinivasan SV, Rema T, Chitra K, Balakameswari KS, Suthanthararajan R, Maheswari BU, Ravindranath E, Rajamani S, Desalination, 235(1-3), 88 (2009)
  17. Yagub MT, Sen TK, Afroze S, Ang HM, Adv. Colloid Interface Sci., 209, 172 (2014)
  18. Tratnyek PG, Johnson RL, Nano Today, 1(2), 44 (2006)
  19. Tang SCN, Lo IMC, Water Res., 47, 2613 (2013)
  20. Wang X, Zhu M, Liu H, Ma J, Li F, Sci. Total Environ., 449, 157 (2013)
  21. Tang NJ, Chen W, Zhong W, Jiang HY, Huang SL, Du YW, Carbon, 44, 423 (2006)
  22. Chen H, Luo HJ, Lan YC, Dong TT, Hu BJ, Wang YP, J. Hazard. Mater., 192(1), 44 (2011)
  23. Yuan S, Zheng Z, Meng X, Chen J, Wang L, Geoderma, 159, 165 (2010)
  24. Cho Y, Choi SI, Chemosphere, 81, 940 (2010)
  25. Su J, Lin S, Chen ZL, Megharaj M, Naidu R, Desalination, 280(1-3), 167 (2011)
  26. Yang L, Lv L, Zhang SJ, Pan BC, Zhang WM, Chem. Eng. J., 178, 161 (2011)
  27. Parshetti GK, Doong RA, Water Res., 43, 3086 (2009)
  28. Ma H, Huang Y, Shen M, Guo R, Cao X, Shi X, J. Hazard. Mater., 211-212, 349 (2012)
  29. Roy E, Patra S, Madhuri R, Sharma PK, Talanta, 132, 406 (2015)
  30. He F, Zhao DY, Liu JC, Roberts CB, Ind. Eng. Chem. Res., 46(1), 29 (2007)
  31. Carpenter AW, de Lannoy CF, Wiesner MR, Environ. Sci. Technol., 49, 5277 (2015)
  32. Wang X, Wang P, Ma J, Liu H, Ning P, Appl. Surf. Sci., 345, 57 (2015)
  33. Djilani C, Zaghdoudi R, Djazi F, Bouchekimad B, Lallame A, Modarressif A, Rogalski M, J. Taiwan Inst. Chem. Eng., http://dx.doi.org/10.1016/j.jtice.2015.02.025. (2015)
  34. Ghaedi M, Montazerozohori M, Biyareh MN, Mortazavi K, Soylak M, Intern. J. Environ. Anal. Chem., 93, 528 (2013)
  35. Yang S, Sun Y, Chen L, Hernandez Y, Feng X, Mullen K, Nat. Sci. Rep., 2(427), 1 (2012)
  36. Baker SH, Lees M, Roy M, Binns C, J. Phys. Condens. Matter, 25, 386004 (2013)
  37. Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM, ACS Sustain. Chem. Eng., 3, 432 (2015)
  38. Konicki W, Sibera D, Mijowska E, Lendzion-Bielun Z, Narkiewicz U, J. Colloid Interface Sci., 398, 152 (2013)
  39. Ahmed SA, Soliman EM, Appl. Surf. Sci., 284, 23 (2013)
  40. Dada AO, Olalekan AP, Olatunya AM, Dada O, IOSR J. Appl. Chem., 3, 38 (2012)
  41. Lugo-Lugo V, Hernandez-Lopez S, Barrera-Diaz C, Urena-Nunez F, Bilyeu B, J. Hazard. Mater., 161(2-3), 1255 (2009)
  42. Singh HP, Gupta N, Sharma SK, Sharma RK, Colloids Surf. A: Physicochem. Eng. Asp., 416, 43 (2013)
  43. Lee Y, Garcia MA, Huls NAF, Sun S, Angew. Chem.-Int. Edit., 49, 1271 (2010)
  44. Shao M, Wang H, Zhang M, Ma DDD, Lee ST, Appl. Phys. Lett., 93, 243110 (2008)
  45. Mittal H, Ballav N, Mishra SB, J. Ind. Eng. Chem., 20(4), 2184 (2014)
  46. Bai L, Li Z, Zhang Y, Wang T, Lu R, Zhou W, Gao H, Zhang S, Chem. Eng. J., 279, 757 (2015)
  47. Yu B, Zhang X, Xie J, Wu R, Liu X, Li H, Chen F, Yang H, Ming ZS, Yang T, Appl. Surf. Sci., 351, 765 (2015)
  48. Feng J, Wang YT, Zou LY, Li BW, He XF, Ren YM, Lv YZ, Fan ZJ, J. Colloid Interface Sci., 438, 318 (2015)
  49. Wang W, Ding Z, Cai M, Jian J, Zeng Z, Li F, Liu JP, Appl. Surf. Sci., 346, 348 (2015)
  50. Li L, Liu F, Duan H, Wang X, Li J, Wang Y, Luo C, Colloids Surf. B: Biointerfaces, http://dx.doi.org/10.1016/j.colsurfb.2015.06.023. (2015)
  51. Gong G, Zhang F, Cheng Z, Zhou L, Int. J. Biol. Macromol., 81, 205 (2015)
  52. Ghaedi M, Hajjati S, Mahmudi Z, Tyagi I, Agarwal S, Maity A, Gupta VK, Chem. Eng. J., 268, 28 (2015)
  53. Wang PF, Cao MH, Wang C, Ao YH, Hou J, Qian J, Appl. Surf. Sci., 290, 116 (2014)
  54. Benhouria AM, Islam A, Zaghouane-Boudiaf H, Boutahala M, Hameed BH, Chem. Eng. J., 270, 621 (2015)