화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.2, 490-499, February, 2016
COx-free hydrogen and carbon nanofibers production by methane decomposition over nickel-alumina catalysts
E-mail:
Nickel catalysts supported on mesoporous nanocrystalline gamma alumina with various nickel loadings were prepared and employed for thermocatalytic decomposition of methane into COx-free hydrogen and carbon nanofibers. The prepared catalysts with different nickel contents exhibited mesoporous structure with high surface area in the range of 121.3 to 66.2m2g.1. Increasing in nickel content decreased the pore volume and increased the crystallite size. The catalytic results revealed that the nickel content and operating temperature both play important roles on the catalytic performance of the prepared catalysts. The results showed that increasing in reaction temperature increased the initial conversion of catalysts and significantly decreased the catalyst lifetime. Scanning electron microscopy (SEM) analysis of the spent catalysts evaluated at different temperatures revealed the formation of intertwined carbon filaments. The results showed that increasing in reaction temperature decreased the diameters of nanofibers and increased the formation of encapsulating carbon.
  1. Abbas HF, Daud WMAW, Int. J. Hydrog. Energy, 35(3), 1160 (2010)
  2. Li YD, Li DX, Wang GW, Catal. Today, 162(1), 1 (2011)
  3. Wuebbles DJ, Jain AK, Fuel Process. Technol., 71(1-3), 99 (2001)
  4. Amin AM, Croiset E, Epling W, Int. J. Hydrog. Energy, 36(4), 2904 (2011)
  5. Jang HT, Cha WS, Korean J. Chem. Eng., 24(2), 374 (2007)
  6. Jung JU, Nam W, Yoon KJ, Han GY, Korean J. Chem. Eng., 24(4), 674 (2007)
  7. Amin AM, Croiset E, Constantinou C, Epling W, Int. J. Hydrog. Energy, 37(11), 9038 (2012)
  8. Arandiyan H, Li J, Ma L, Hashemnejad SM, Mirzaei MZ, Chen J, Chang H, Liu C, Wang C, Chen L, J. Ind. Eng. Chem., 18(6), 2103 (2012)
  9. Marban G, Vales-Solis T, Int. J. Hydrog. Energy, 32(12), 1625 (2007)
  10. Lua AC, Wang HY, Appl. Catal. B: Environ., 132-133, 469 (2013)
  11. Kothari R, Buddhi D, Sawhney R, Renew. Sust. Energ. Rev., 12, 553 (2008)
  12. Holladay JD, Hu J, King DL, Wang Y, Catal. Today, 139, 244 (2009)
  13. Khalesi A, Arandiyan H, Parvari M, Chin. J. Catal., 29, 960 (2008)
  14. Arandiyan H, Peng Y, Liu CX, Chang HZ, Li JH, J. Chem. Technol. Biotechnol., 89(3), 372 (2014)
  15. Kim MH, Lee EK, Jun JH, Han GY, Kong SJ, Lee BK, Lee TJ, Yoon KJ, Korean J. Chem. Eng., 20(5), 835 (2003)
  16. Navarro RM, Pena MA, Fierro JLG, Chem. Rev., 107(10), 3952 (2007)
  17. Overpeck JT, Cole JE, Annu. Rev. Environ. Resour., 31, 1 (2006)
  18. Qian WH, Liu TA, Wang ZW, Wei FA, Li ZF, Luo GH, Li YD, Appl. Catal. A: Gen., 260(2), 223 (2004)
  19. Chen JL, Li YD, Li ZQ, Zhang XX, Appl. Catal. A: Gen., 269(1-2), 179 (2004)
  20. Lee SC, Seo HJ, Han GY, Korean J. Chem. Eng., 30(9), 1716 (2013)
  21. Yu MF, Files BS, Arepalli S, Ruoff RS, Phys. Rev. Lett., 84, 5552 (2000)
  22. Saraswat SK, Pant KK, J. Natural Gas Sci. Eng., 13, 52 (2013)
  23. Ermakova MA, Ermakov DY, Catal. Today, 77(3), 225 (2002)
  24. Li Y, Zhang B, Tang X, Xu Y, Shen W, Catal. Commun., 7, 380 (2006)
  25. Dupuis AC, Prog. Mater. Sci., 50(8), 929 (2005)
  26. Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Norskov JK, Nature, 427, 426 (2004)
  27. Abild-Pedersen F, Norskov JK, Rostrup-Nielsen JR, Sehested J, Helveg S, Phys. Rev. B, 73, 115419 (2006)
  28. Wang WH, Wang HY, Yang Y, Jiang SB, Int. J. Hydrog. Energy, 37(11), 9058 (2012)
  29. Guevara JC, Wang JA, Chen LF, Valenzuela MA, Salas P, Garcia-Ruiz A, Toledo JA, Cortes-Jacome MA, Angeles-Chavez C, Novaro O, Int. J. Hydrog. Energy, 35(8), 3509 (2010)
  30. Ashok J, Raju G, Reddy PS, Subrahmanyam M, Venugopal A, Int. J. Hydrog. Energy, 33(18), 4809 (2008)
  31. Ashok J, Subrahmanyam M, Venugopal A, Int. J. Hydrog. Energy, 33(11), 2704 (2008)
  32. Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207 (1998)
  33. Alipour Z, Rezaei M, Meshkani F, Fuel, 129, 197 (2014)
  34. Awadallah AE, Aboul-Enein AA, Aboul-Gheit AK, Renew. Energy, 57, 671 (2013)
  35. Wang R, Li YH, Shi RH, Yang MM, J. Mol. Catal. A-Chem., 344(1-2), 122 (2011)
  36. Wu M, Hercules DM, J. Phys. Chem., 83, 2003 (1979)
  37. Li CP, Chen YW, Thermochim. Acta, 256(2), 457 (1995)
  38. Ermakova MA, Ermakov DY, Kuvshinov GG, Appl. Catal. A: Gen., 201(1), 61 (2000)
  39. Zavarukhin SG, Kuvshinov GG, Appl. Catal. A: Gen., 272(1-2), 219 (2004)
  40. Li Y, Chen J, Ma Y, Zhao J, Qin Y, Chang L, Chem. Commun., 12, 1141 (1999)
  41. Baker R, Barber M, Harris P, Feates F, Waite R, J. Catal., 26, 51 (1972)
  42. Chen JL, Li XM, Li YD, Qin YN, Chem. Lett., 32(5), 424 (2003)
  43. Snoeck JW, Froment GF, Fowles M, J. Catal., 169(1), 240 (1997)
  44. Takenaka S, Ishida M, Serizawa M, Tanabe E, Otsuka K, J. Phys. Chem. B, 108(31), 11464 (2004)
  45. Quddus MR, Hossain MM, de Lasa HI, Catal. Today, 210, 124 (2013)
  46. Echegoyen Y, Suelves I, Lazaro MJ, Moliner R, Palacios JM, J. Power Sources, 169(1), 150 (2007)
  47. Suelves I, Lazaro MJ, Moliner R, Corbella BM, Palacios JM, Int. J. Hydrog. Energy, 30(15), 1555 (2005)
  48. Li Y, Zhang BC, Xie XW, Liu JL, Xu YD, Shen WJ, J. Catal., 238(2), 412 (2006)