Polymer(Korea), Vol.40, No.1, 117-123, January, 2016
실리카 코팅된 다중벽 탄소 나노튜브/에폭시 복합체의 기계적 물성
Mechanical Properties of Silica-coated Multi-walled Carbon Nanotube/Epoxy Composites
E-mail:
초록
다중벽 탄소 나노튜브(MWCNTs)/에폭시 복합체의 기계적 강도와 전기 절연성을 증가시키기 위하여, tetraethyl orthosilicate(TEOS)를 전구체로 사용한 1 단계 졸-젤 반응을 통하여 다중벽 탄소 나노튜브(MWCNTs)를 실리카 층으로 코팅하였다. MWCNTs 표면을 화학적으로 개질하지 않고 폴리에틸렌이민을 커플링제로 사용하여 실리카로 균일하게 코팅하였다. 실리카 코팅된 MWCNTs 및 순수한 MWCNTs를 충전제로 사용하여 제조된 복합체의 기계적 특성, 열적 특성, 전기적 성질을 관찰하였다. 에폭시 사슬들은 MWCNTs 표면의 실리카 층에 강하게 속박되어, 실리카 층은 MWCNTs에 전기 절연막을 형성하였다. 결과적으로, 실리카 코팅된 MWCNTs가 충전된 에폭시 복합체의 기계적 물성 및 전기저항이 증가하였다.
Multi-walled carbon nanotubes (MWCNTs) were coated with silica layers via a one-step sol-gel process with tetraethyl orthosilicate (TEOS) as a silica precursor to enhance the mechanical strength and electrical resistivity of MWCNTs-filled epoxy composites. The MWCNTs were coated uniformly with silica using polyethyleneimine as a coupling agent without chemical modification of the surface of the MWCNTs. The silica-coated MWCNTs were used as a filler in the epoxy. The epoxy composites filled with the raw and silica-coated MWCNTs were prepared and their properties were examined in terms of mechanical, thermal and electrical properties. The epoxy chains were bound strongly to the silica layer on the surface of the MWCNTs, and the silica layer provided the MWCNTs with electrically insulating barriers. As a result, the silica-coated MWCNTs-filled epoxy composites showed improved mechanical strength and electrical resistivity.
- Lu CS, Mai YW, J. Mater. Sci., 43(17), 6012 (2008)
- Ma PC, Kim JK, Tang BZ, Compos. Sci. Technol., 67, 2965 (2007)
- Bal S, Bull. J. Mater. Sci., 33, 27 (2010)
- Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K, Compos. Sci. Technol., 64, 2363 (2004)
- Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S, Compos. Sci. Technol., 70, 2237 (2010)
- Chicatun F, Cho J, Schaab S, Brusatin G, Colombo P, Roether JA, Boccaccini AR, Adv. Appl. Ceram., 106, 186 (2007)
- Kuang Q, Li S, Xie Z, Lin S, Zhang X, Xie S, Huang R, Zheng L, Carbon, 44, 1166 (2006)
- Geng Y, Liu MY, Li J, Shi XM, Kim JK, Compos. Pt. A-Appl. Sci. Manuf., 39, 1876 (2008)
- Zhou Z, Wang S, Lu L, Zhang Y, Compos. Sci. Technol., 68, 1727 (2008)
- Lachman N, Wagner HD, Compos. Pt. A-Appl. Sci. Manuf., 41, 1093 (2010)
- Park SJ, Oh JS, Rhee KY, Carbon Lett., 6, 106 (2005)
- Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K, Chem. Phys. Lett., 370(5-6), 820 (2003)
- Kim JA, Seong DG, Kang TJ, Youn JR, Carbon, 44, 1898 (2006)
- Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS, Chem. Mater., 15, 3198 (2003)
- Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV, Nano Lett., 3, 1107 (2003)
- Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G, Polymer, 48(19), 5662 (2007)
- Xu T, Yang JH, Liu JW, Fu Q, Appl. Surf. Sci., 253(22), 8945 (2007)
- Yuen S, Ma CM, Lin Y, Kuan H, Compos. Sci. Technol., 67, 2564 (2007)
- Yang W, Ding P, Zhou L, Yu J, Chen X, Jiao F, Appl. Surf. Sci., 282, 38 (2013)
- Chung MH, Chen LM, Wang WH, Lai Y, Yang PF, Lin HP, J. Taiwan Inst. Chem. Eng., 45, 2813 (2014)
- Kim K, Nam J, Baeck SH, Lee K, Park SJ, Shim SE, Macromol. Res., 23(5), 422 (2015)
- Loo S, Idapalapati S, Wang S, Shen L, Mhaisalkar SG, Scr. Mater., 57, 1157 (2007)
- Kim Y, Kim M, Choi JK, Shim SE, Polym.(Korea), 39, 136 (2014)