Polymer(Korea), Vol.40, No.1, 17-25, January, 2016
실크피브로인과 고탄성 폴리우레탄의 블렌드 나노섬유의 합성 및 그들의 생체적합성 평가
Synthesis of Nanofiber Using High Elastic Polyurethane-Silk Fibroin Blends and Their Biocompatible Properties
E-mail:
초록
생체적합성 고분자의 물리적 및 화학적 특성을 개선하기 위하여 고탄성 폴리우레탄(PU)과 경직하고 생체친화성 및 무독성을 겸비한 실크 피브로인(SF)과 SF/PU=1/3, 2/2 및 3/1 중량 비를 가진 블렌드를 제조하였다. 고탄성PU는 헥사메틸렌 디이소시아네이트와 디올로서 isosorbide/폴리카보네이트 디올(4/1)을 사용하여 용융하여 벌크 중합하여 합성하였다. 그리고 전기방사법에 의하여 SF/PU 블렌드로부터 나노섬유 페브릭을 제조하였다. SF의 함유량을 증가시키면 파단변형률(strain at break)이 감소함과 동시에 인장력(tensile strength)도 감소했으며, 실크의 함유량이 가장 높은 SF/PU(3/1) 블렌드의 경우 강성도(stiffness)는 150 MPa을 나타내었으며 SF/PU(1/3) 블렌드 나노섬유 페브릭은 150%의 파단 변형률을 보여주었다. 생분해도 검사는 37 oC 온도의 인산완충액(phosphate buffer solution)안에서 진행하였으며, 4주후 30%의 질량 감량을 보여주었다. 나노섬유 페브릭 표면에 C2C12(쥐의 근원세포)의 생체 적합성 검사에서 2일 뒤에, 상대적으로 모든 블렌드 페브릭들의 세포 수가 최적화된 조직 배양 형성의 확산 비율보다 높은 것으로 나타났다. 이러한 폴리우레탄들은 부드럽고, 유연하고, 생체 적합한 요소들로 인하여 부드러운 조직의 증대와 재생 연구에 적합한 것으로 예상할 수 있었다.
As a way to modify both the physical and biological properties of a highly elastic and biodegradable polyurethane (PU), silk fibroin (SF) with rigidity, biocompatibility and non-toxicity was blended with PU having SF/PU=1/3, 2/2 and 3/1 weight ratios. Bio-based high elastic PU was prepared from hexamethylene diisocyanate and isosorbide/polycarbonate diol (4/1) by simple one-shot bulk polymerization and nanofibers were electrospun directly from SF and PU blend. With increasing SF content, the tensile strength decreased as did the strain at break; the stiffness increased to around 150 MPa for the SF/PU (3/1) with highest silk content. On the other hand, SF/PU=1/3 blend nanofiber showed a 150 % strain at break. Degradation tests performed at 37 oC in phosphate buffer solution showed a mass loss of 30% after 4 weeks, which showed an initial rapid weight loss. The in vitro cytocompatibility test results following culture of C2C12 (a mouse myoblast cell line) on the nanofiber film surface showed that relative cell number on all of the blend films after 2 days was higher compared to the proliferation rate on the optimized tissue culture plastic. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration.
- Unger RE, Wolf M, Peters K, Motta A, Migliaresi C, Kirkpatrick CJ, Biomaterials, 25, 1069 (2004)
- Qu Y, Yang Y, Li J, Chen Z, Li J, Tang K, Man Y, J. Biomater. Appl., 14, 21 (2010)
- Zhang K, Wang H, Huang C, Su Y, Mo X, Ikada Y, J. Biomed. Mater. Res. Part A, 93, 984 (2010)
- Vachiraroja N, Ratanavaraporna J, Damrongsakkula S, Pichyangkurab R, Banaprasertc T, Kanokpanont S, Int. J. Biol. Macromol., 45, 470 (2009)
- Elia1 R, Newhide DR, Pedevillano PD, Reiss GR, Firpo MA, Hsu EW, Kaplan DL, Prestwich GD, Peattie RA, J. Biomater. Appl., 27, 749 (2013)
- Kundu J, Poole-Warren LA, Martens P, Kundu SC, Acta Biomater., 8, 1720 (2012)
- Hollinger JO, Battistone GC, Clin. Orthop. Relat. Res., 207, 290 (1986)
- Ratner BD, Hoffman A, Schoen FJ, Lemons JE, J. Clin. Eng., 22, 26 (1997)
- Yang S, Leong KF, Du Z, Chua CK, Tissue Eng., 7, 679 (2001)
- Hollinger JO, Battistone GC, Clin. Orthop. Relat. Res., 207, 290 (1986)
- Lelah MD, Cooper SL, Grasel TG, Macromol. Chem. Phys., 34, 199 (1986)
- Borkenhagen M, Stoll RC, Neuenschwander P, Suter UW, Aebischer P, Biomaterials, 19, 2155 (1998)
- Loh XJ, Tan KK, Li X, Li J, Biomaterials, 27, 1841 (2006)
- Korley LTJ, Pate BD, Thomas EL, Hammond PT, Polymer, 47(9), 3073 (2006)
- Park HS, Gong MS, Knowles JC, J. Biomater. Appl., 27, 99 (2012)
- Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL, Biomaterials, 23, 4131 (2002)
- Veparia C, Kaplan DL, Prog. Polym. Sci, 32, 991 (2007)
- David LK, Jin HJ, Rutledge G, US Patent 8071722 B2 (2011).
- Sofia S, McCarthy MB, Gronowicz G, Kaplan DL, J. Biomed. Mater. Res., 54, 139 (2001)
- Takahashi M, Tsujimoto K, Yamada H, Takagi H, Nakamori S, Biotechnol. Lett., 25(21), 1805 (2003)
- Kurioka A, Yamazaki M, Hirano H, Eur. J. Biochem.-FEBS, 259, 120 (1999)
- Lee J, Lee S, Kim S, Kim K, Kim Y, Song J, Lee D, Khang G, Polym.(Korea), 37(2), 127 (2013)
- Panthi G, Park M, Kim HY, Park SJ, J. Ind. Eng. Chem., 24, 1 (2015)
- Nam YS, Son WK, Park WH, Polym. Sci. Technol., 14(3), 274 (2003)
- Kim HJ, Kang MS, Knowles JC, Gong MS, J. Biomater. Appl., 29, 454 (2014)
- Lim DI, Park HS, Park JH, Gong MS, Knowles JC, J. Bioact. Compat. Polym., 28, 274 (2013)
- Park HS, Gong MS, Knowles JC, J. Mater. Sci. -Mater. Med., 24, 281 (2013)
- Park HS, Gong MS, Park JH, Moon SI, Wall IB, Kim HW, Lee JH, Konwles JC, Acta Biomater., 9, 8962 (2013)
- Vasita R, Katti DS, Int. J. Nanomedicine, 1, 15 (2006)
- Um IC, Kweon HY, Park YH, Hudson S, Int. J. Biol. Macromol., 29, 91 (2001)
- Lee KY, Ha WS, Polymer, 40(14), 4131 (1999)
- Wei K, Li Y, Kim KO, Nakagawa Y, Kim BS, Abe K, Chen GQ, Kim IS, J. Biomed. Mater. Res. Part A, 97A, 272 (2011)
- Tsukada M, Freddi G, Kasai N, J. Polym. Sci. B: Polym. Phys., 32(7), 1175 (1994)
- Holzapfel GA, “Biomechanics of soft tissue”, in Biomech preprint series, Graz University of Technology, Graz, Austria, 2000.
- Sharma B, Keul H, Hocker H, Loontjens T, van Benthem R, Polymer, 46(6), 1775 (2005)
- Gorna K, Gogolewski S, J. Biomed. Mater. Res., 60, 592 (2002)
- Cohn D, Stern T, Gonzalez MF, Epstein J, J. Biomed. Mater. Res., 59, 273 (2002)
- Linhao L, Haibin L, Yuna Q, Xian L, Gurinder K, Li Z, Wanqian L, Yonggang L, Kaiyong C, Li Y, Int. J. Biol. Macromol., 49, 223 (2011)
- Geoghegan M, Krausch G, Prog. Polym. Sci, 28, 261 (2003)
- Piret WH, US Patent 6025073 (1998).
- Lorenz M, Sandra H, Vassilis K, Carl KH, John M, Gloria G, Ludwig Z, Robert L, Gordana VN, David LK, Biomaterials, 26, 147 (2005)