화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.1, 114-119, January, 2016
Preparation of Cu/ZnO catalyst using a polyol method for alcohol-assisted low temperature methanol synthesis from syngas
E-mail:,
A polyol method was used to prepare Cu/ZnO catalysts for alcohol-assisted low temperature methanol synthesis from syngas. Unlike conventional low temperature methanol synthesis, ethanol was employed both as a solvent and a reaction intermediate. Catalyst characterization revealed that Cu/ZnO catalysts were successfully and efficiently prepared using the polyol method. Various preparation conditions such as PVP concentration and identity of ZnO precursor strongly influenced the catalytic activity of Cu/ZnO catalysts. Copper dispersion and catalyst morphology played key roles in determining the catalytic performance of the Cu/ZnO catalyst in alcohol-assisted low temperature methanol synthesis. A high copper dispersion and platelike Cu/ZnO structure led to high catalytic activity. Among the catalysts tested, 5_Cu/ZnO_Zn(Ac)2 had the best catalytic performance due to its high copper dispersion.
  1. Waugh KC, Catal. Today, 15, 51 (1992)
  2. Jung KD, Joo OS, Catal. Lett., 84(1-2), 21 (2002)
  3. Tijm PJA, Waller FJ, Brown DM, Appl. Catal. A: Gen., 211, 275 (2001)
  4. Fujita S, Kanamori Y, Satriyo AM, Takezawa N, Catal. Today, 45(1-4), 241 (1998)
  5. Lee JS, Han SH, Kim HG, Lee KH, Kim YG, Korean J. Chem. Eng., 17(3), 332 (2000)
  6. Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K, Appl. Catal. A: Gen., 263(2), 249 (2004)
  7. Li Z, Yan SW, Fan H, Fuel, 106, 178 (2013)
  8. Khodashenas B, Ghorbani HR, Korean J. Chem. Eng., 31(7), 1105 (2014)
  9. Shi L, Shen WZ, Yang GH, Fan XJ, Jin YZ, Zeng CY, Matsuda K, Tsubaki N, J. Catal., 302, 83 (2013)
  10. Shi L, Tao K, Yang RG, Meng FZ, Xing C, Tsubaki N, Appl. Catal. A: Gen., 401(1-2), 46 (2011)
  11. Witoon T, Permsirivanich T, Donphai W, Jaree A, Chareonpanich M, Fuel Process. Technol., 116, 72 (2013)
  12. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 337(1), 48 (2008)
  13. Tanaka Y, Utaka T, Kikuchi R, Sasaki K, Eguchi K, Appl. Catal. A: Gen., 238(1), 11 (2003)
  14. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS, J. Colloid Interface Sci., 311(2), 417 (2007)
  15. Altincekic TG, Boz I, Bull. Mat. Sci., 31, 619 (2008)
  16. Bobadilla LF, Garcia C, Delgado JJ, Sanz O, Sarria FR, Centeno MA, Odriozola JA, J. Magn. Magn. Mater., 324, 4011 (2012)
  17. Lu CY, Tseng HH, Wey MY, Liu LY, Chuang KH, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 157, 105 (2009)
  18. Chuang KH, Shih K, Lu CY, Wey MY, Int. J. Hydrog. Energy, 38(1), 100 (2013)
  19. Song KC, Lee SM, Park TS, Lee BS, Korean J. Chem. Eng., 26(1), 153 (2009)
  20. Byeon JH, Kim YW, Ultrason. Sonochem., 19, 209 (2012)
  21. Boz I, Altincekic TG, React. Kinet. Mech. Catal., 102, 195 (2011)
  22. Bayrakdar E, Altincekic TG, Oksuzomer MAF, Fuel Process. Technol., 110, 167 (2013)
  23. Lee JM, Jun YD, Kim DW, Lee YH, Oh SG, Mater. Chem. Phys., 114(2-3), 549 (2009)
  24. Neiva EGC, Bergamini MF, Oliveira MM, Marcolino LH, Zarbin AJG, Sens. Actuators B-Chem., 196, 574 (2014)
  25. Reubroycharoen P, Yamagami T, Vitidsant T, Yoneyama Y, Ito M, Tsubaki N, Energy Fuels, 17(4), 817 (2003)
  26. Mahajan D, Sapienza RS, Slegeir WA, O’Hare TE, US Patent, 4,935,395 (1990).
  27. Sapienza RS, Slegeir WA, O’Hare TE, Mahajan D, US Patent, 4,623,634 (1986).
  28. Sapienza RS, Slegeir WA, O’Hare TE, Mahajan D, US Patent, 4,619,946 (1986).
  29. Mahajan D, Slegeir WA, Sapienza RS, O’Hare TE, US Patent, 4,613,623 (1986).
  30. Lee ES, Aika KI, J. Mol. Catal. A-Chem., 141, 241 (1999)
  31. Sapienza RS, Slegeir WA, Segeir WA, O’Hare TE, Mahajan D, US Patent, 4,614,749 (1986).
  32. Tsubaki N, Ito M, Fujimoto K, J. Catal., 197(1), 224 (2001)
  33. Zeng J, Tsubaki N, Fujimoto K, Sci. China Ser. B, 45, 106 (2002)
  34. Hu B, Yamaguchi Y, Fujimoto K, Catal. Commun., 10, 1620 (2009)
  35. Santacesaria E, Carotenuto G, Tesser R, Di Serio M, Chem. Eng. J., 179, 209 (2012)