Korean Journal of Chemical Engineering, Vol.33, No.1, 114-119, January, 2016
Preparation of Cu/ZnO catalyst using a polyol method for alcohol-assisted low temperature methanol synthesis from syngas
E-mail:,
A polyol method was used to prepare Cu/ZnO catalysts for alcohol-assisted low temperature methanol synthesis from syngas. Unlike conventional low temperature methanol synthesis, ethanol was employed both as a solvent and a reaction intermediate. Catalyst characterization revealed that Cu/ZnO catalysts were successfully and efficiently prepared using the polyol method. Various preparation conditions such as PVP concentration and identity of ZnO precursor strongly influenced the catalytic activity of Cu/ZnO catalysts. Copper dispersion and catalyst morphology played key roles in determining the catalytic performance of the Cu/ZnO catalyst in alcohol-assisted low temperature methanol synthesis. A high copper dispersion and platelike Cu/ZnO structure led to high catalytic activity. Among the catalysts tested, 5_Cu/ZnO_Zn(Ac)2 had the best catalytic performance due to its high copper dispersion.
- Waugh KC, Catal. Today, 15, 51 (1992)
- Jung KD, Joo OS, Catal. Lett., 84(1-2), 21 (2002)
- Tijm PJA, Waller FJ, Brown DM, Appl. Catal. A: Gen., 211, 275 (2001)
- Fujita S, Kanamori Y, Satriyo AM, Takezawa N, Catal. Today, 45(1-4), 241 (1998)
- Lee JS, Han SH, Kim HG, Lee KH, Kim YG, Korean J. Chem. Eng., 17(3), 332 (2000)
- Shishido T, Yamamoto Y, Morioka H, Takaki K, Takehira K, Appl. Catal. A: Gen., 263(2), 249 (2004)
- Li Z, Yan SW, Fan H, Fuel, 106, 178 (2013)
- Khodashenas B, Ghorbani HR, Korean J. Chem. Eng., 31(7), 1105 (2014)
- Shi L, Shen WZ, Yang GH, Fan XJ, Jin YZ, Zeng CY, Matsuda K, Tsubaki N, J. Catal., 302, 83 (2013)
- Shi L, Tao K, Yang RG, Meng FZ, Xing C, Tsubaki N, Appl. Catal. A: Gen., 401(1-2), 46 (2011)
- Witoon T, Permsirivanich T, Donphai W, Jaree A, Chareonpanich M, Fuel Process. Technol., 116, 72 (2013)
- Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 337(1), 48 (2008)
- Tanaka Y, Utaka T, Kikuchi R, Sasaki K, Eguchi K, Appl. Catal. A: Gen., 238(1), 11 (2003)
- Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS, J. Colloid Interface Sci., 311(2), 417 (2007)
- Altincekic TG, Boz I, Bull. Mat. Sci., 31, 619 (2008)
- Bobadilla LF, Garcia C, Delgado JJ, Sanz O, Sarria FR, Centeno MA, Odriozola JA, J. Magn. Magn. Mater., 324, 4011 (2012)
- Lu CY, Tseng HH, Wey MY, Liu LY, Chuang KH, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 157, 105 (2009)
- Chuang KH, Shih K, Lu CY, Wey MY, Int. J. Hydrog. Energy, 38(1), 100 (2013)
- Song KC, Lee SM, Park TS, Lee BS, Korean J. Chem. Eng., 26(1), 153 (2009)
- Byeon JH, Kim YW, Ultrason. Sonochem., 19, 209 (2012)
- Boz I, Altincekic TG, React. Kinet. Mech. Catal., 102, 195 (2011)
- Bayrakdar E, Altincekic TG, Oksuzomer MAF, Fuel Process. Technol., 110, 167 (2013)
- Lee JM, Jun YD, Kim DW, Lee YH, Oh SG, Mater. Chem. Phys., 114(2-3), 549 (2009)
- Neiva EGC, Bergamini MF, Oliveira MM, Marcolino LH, Zarbin AJG, Sens. Actuators B-Chem., 196, 574 (2014)
- Reubroycharoen P, Yamagami T, Vitidsant T, Yoneyama Y, Ito M, Tsubaki N, Energy Fuels, 17(4), 817 (2003)
- Mahajan D, Sapienza RS, Slegeir WA, O’Hare TE, US Patent, 4,935,395 (1990).
- Sapienza RS, Slegeir WA, O’Hare TE, Mahajan D, US Patent, 4,623,634 (1986).
- Sapienza RS, Slegeir WA, O’Hare TE, Mahajan D, US Patent, 4,619,946 (1986).
- Mahajan D, Slegeir WA, Sapienza RS, O’Hare TE, US Patent, 4,613,623 (1986).
- Lee ES, Aika KI, J. Mol. Catal. A-Chem., 141, 241 (1999)
- Sapienza RS, Slegeir WA, Segeir WA, O’Hare TE, Mahajan D, US Patent, 4,614,749 (1986).
- Tsubaki N, Ito M, Fujimoto K, J. Catal., 197(1), 224 (2001)
- Zeng J, Tsubaki N, Fujimoto K, Sci. China Ser. B, 45, 106 (2002)
- Hu B, Yamaguchi Y, Fujimoto K, Catal. Commun., 10, 1620 (2009)
- Santacesaria E, Carotenuto G, Tesser R, Di Serio M, Chem. Eng. J., 179, 209 (2012)