화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.6, 674-680, December, 2015
리튬이차전지 실리콘 전극용 용해성 폴리이미드 바인더
Soluble Polyimide Binder for Silicon Electrodes in Lithium Secondary Batteries
E-mail:,
초록
리튬이차전지 실리콘 전극에 활용하기 위해, 유기용매에 용해성이 있는 폴리이미드(Polyimide, PI) 고분자 바인더를 두 단계 반응을 이용해 합성하였다. 두 가지 단량체(Bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic Dianhydride (BCDA)와 4,4-oxydianiline (ODA))의 개환 반응 및 축합 반응을 통해 PI 고분자 바인더를 합성하였다. 합성된 PI 고분자 바인더를 이용해 실리콘(silicon, Si) 음극 전극을 제조하였다. 또한 비교군으로써, Polyvinylidene Fluoride (PVDF)을 고분자 바인더로 사용하는 동일 조성을 가진 실리콘 전극을 제조하였다. PI 바인더를 사용한 Si 전극(2167 mAh g-1)의 초기 쿨롱효율은 기존 PVDF 바인더 조성의 Si 전극(1,740 mAh g-1)과 유사했지만, 방전용량은 크게 개선되었다. 특히 수명 특성에서는 PI 바인더를 사용한 Si 전극이 우수한 특성을 나타내었는데, 이는 PI 바인더를 사용한 Si 전극접착력(0.217 kNm-1)의 전극 접착력이 PVDF를 사용한 Si 전극(0.185 kN m-1)보다 높아, 실리콘 부피팽창에 의한 전극 구조 열화가 적절히 제어되었기 때문이라고 판단된다. Si 전극 내의 접착력은 surface and interfacial cutting analysis system (SAICAS) 장비를 통해 검증하였다.
A solvent-soluble polyimide (PI) polymeric binder was synthesized by a two-step reaction for silicon (Si) anodes for lithium-ion batteries. Polyamic acid was first prepared through ring opening between two monomers, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA) and 4,4-oxydianiline (ODA), followed by condensation reaction. Using the synthesized PI polymeric binder (molecular weight = ~10,945), the coating slurry was then prepared and Si anode was fabricated. For the control system, Si anode based on polyvinylidene fluoride (PVDF, molecular weight = ~350,000) having the same constituent ratio was prepared. During precycling, PI polymeric binder revealed much improved discharge capacity (2,167 mAh g-1) compared to that of using PVDF polymeric binder (1,740 mAh g-1), while the Coulombic efficiency of two systems were similar. PI polymeric binder improved the cycle retention ability during cycles compared to that of using PVDF, which is attributed to an improved adhesion property inside Si anode diminishing the dimensional stress during Si volume changes. The adhesion property of each polymeric binder in Si anode was confirmed by surface and interfacial cutting analysis system (SAICAS) (Si anode based on PI polymeric binder = 0.217 kN m-1 and Si anode based on PVDF polymeric binder = 0.185 kN m-1).
  1. Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
  2. Karden E, Ploumen S, Fricke B, Miller T, Snyder K, J. Power Sources, 168(1), 2 (2007)
  3. Rydh CJ, Sanden BA, Energy Conv. Manag., 46(11-12), 1957 (2005)
  4. Chu S, Majumdar A, Nature, 488(7411), 294 (2012)
  5. Szczech JR, Jin S, Energy Environ. Sci., 4, 56 (2011)
  6. Ohara S, Suzuki J, Sekine K, Takamura T, J. Power Sources, 136(2), 303 (2004)
  7. Besenhard JO, Yang J, Winter M, J. Power Sources, 68(1), 87 (1997)
  8. Hatchard TD, Dahn JR, J. Electrochem. Soc., 151, 838 (2004)
  9. Choi NS, Yew KH, Lee KY, Sung M, Kim H, Kim SS, J. Power Sources, 161(2), 1254 (2006)
  10. Winter M, Besenhard JO, Electrochim. Acta, 45(1-2), 31 (1999)
  11. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY, ACS Nano, 6, 1522 (2012)
  12. Xue L, Xu G, Li Y, Li S, Fu K, Shi Q, Zhang X, ACS Appl. Mater. Interfaces, 5, 21 (2013)
  13. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y, Nat. Nanotechnol., 7, 310 (2012)
  14. Song S, Kim SW, Lee DJ, Lee YG, Kim KM, Kim CH, Park JK, Lee YM, Cho KY, ACS Appl. Mater. Interfaces, 6, 11544 (2014)
  15. Courtel FM, Niketic S, Duguay D, Abu-Lebdeh Y, Davidson IJ, J. Power Sources, 196(4), 2128 (2011)
  16. Li J, Le DB, Ferguson PP, Dahn JR, Electrochim. Acta, 55(8), 2991 (2010)
  17. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G, ACS Appl. Mater. Interfaces, 2, 3004 (2010)
  18. Ding N, Xu J, Yao YX, Wegner G, Lieberwirth I, Chen CH, J. Power Sources, 192(2), 644 (2009)
  19. Lee Y, Choi J, Ryou MH, Lee YM, Polym. Sci. Technol., 24(6), 603 (2013)
  20. Yoo M, Frank CW, Mori S, Yamaguchi S, Polymer, 44(15), 4197 (2003)
  21. Jarvis CR, Macklin WJ, Macklin AJ, Mattingley NJ, Kronfli E, J. Power Sources, 97-98, 664 (2001)
  22. Park SJ, Zhao H, Ai G, Wang C, Song XY, Yuca N, Battaglia VS, Yang WL, Liu G, J. Am. Chem. Soc., 137(7), 2565 (2015)
  23. Park HK, Kong BS, Oh ES, Electrochem. Commun., 13, 1051 (2011)
  24. Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K, J. Phys. Chem., 115, 13487 (2011)
  25. Choi NS, Yew KH, Choi WU, Kim SS, J. Power Sources, 177(2), 590 (2008)
  26. Choi J, Kim K, Jeong J, Cho KY, Ryou MH, Lee YM, ACS Appl. Mater. Interfaces, 7, 14851 (2015)
  27. Matsumoto T, Kurosaki T, Macromolecules, 30(4), 993 (1997)
  28. Faghihi K, Hajibeygi M, Shabanian M, Polym. Int., 59, 218 (2010)
  29. Tsuda Y, Tanaka Y, Kamata K, Hiyoshi N, Mataka S, Matsuki Y, Nishikawa M, Kawamura S, Bessho N, Polym. J., 29, 574 (1997)
  30. Ha SH, A study on the synthesis and characteristics of soluble, thermal resistance polyimides using DAM(2,4-diamino mesitylene), MS Dissertation, Yonsei University, Seoul, Korea (1999).
  31. Zhai L, Yang SY, Fan L, Polymer, 53(16), 3529 (2012)
  32. Son B, Ryou MH, Choi J, Lee T, Yu HK, Kim JH, Lee YM, ACS Appl. Mater. Interfaces, 6, 526 (2014)